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Chapter 1

Introduction

Optimal control is among the most important motivations and applications of modern methods

os variational analysis, which concerns the properties of control functions that give solution

which minimize a cost function, when inserted into a differential equation. The differential

inclusion model encompasses ordinary differential equations control systems represented in the

parameterized control form, which make optimal control systems described by ordinary dif-

ferential equations can be generalized to optimization problems governed by differential inclu-

sions. However, this kind of optimization problem is intrinsically nonsmooth, (even the cost

function and all the real-valued functions in the problem is smooth) due to set-valued dynam-

ic constraints. Thus the usage and development of appropriate tools of variational analysis

and generalized differentiation are required for the study and applications of (P ) and related

problems governed by differential inclusions. The method of discrete approximations has been

well recognized as an efficient approach to investigate differential inclusions and optimization

problems for them from both qualitative and quantitative/numerical viewpoints; see, e.g., the

surveys and books [16, 22, 30, 34] and the bibliographies therein.

This dissertation addresses the following optimization problem (P ) of the generalized Bolza

type for dynamic systems governed by constrained differential inclusions with general initial

conditions and endpoint constraints:

minimize J [x] := ϕ
(
x(T )

)
+

∫ T

0
f
(
x(t), ẋ(t), t

)
dt (1.1)
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over absolutely continuous trajectories x : [0, T ]→ Rn satisfying the differential inclusion

ẋ(t) ∈ F
(
x(t), t

)
a.e. t ∈ [0, T ] with x(0) = x0 ∈ Rn (1.2)

subject to geometric endpoint constraints,

x(T ) ∈ Ω ⊂ Rn. (1.3)

Here x0 is a fixed n-vector, F : Rn × [0, T ] →→ Rn is a set-valued mapping/multifunction, Ω is

an nonempty set, f and ϕ are real-valued functions.

Observe that the differential inclusion framework (1.2) covers not only standard control

systems with constant control sets but also significantly more challenging problems with feed-

back reflected by the dependence of the control sets in ordinary differential equations on state

variables. Differential inclusion problems of type (P ) have been well recognized in dynamic

optimization and control theory as a convenient framework to cover the vast majority of con-

ventional and nonconventional models arising in optimization and control of dynamical systems

described via time derivatives. We refer the reader to the books [30, 38] and the bibliogra-

phies therein for more discussions, historical overviews as well as applied models governed by

differential inclusion.

For the above Bolza problem, the method of discrete approximations allows us to approxi-

mate this continuous-time problem by those involving discrete dynamics. A principal question

arising in all the aspects and modifications of this method (even without applications to opti-

mization) is about the possibility to approximate, in a suitable sense, feasible trajectories of the

given differential inclusion by those for finite-difference inclusions that appear by using one or
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another scheme to replace time derivatives. The majority of the results in this direction concern

explicit Euler schemes under the Lipschitz continuity of velocity mappings with respect to state

variables; see [2, 16, 22, 27, 30, 34] for more details and references.

Another line of numerical method for differential inclusions is higher-order discrete approx-

imation; see, e.g., [1, 21, 23, 35, 36, 37]. The previous work almost focus on the convergence

rates and the error estimate for discrete approximations. The second-order approximationis was

given in the case if the right hand side set value mapping F is strongly convex valued and Lip-

schitz continuous in [35]. Veliov showed that for the general form of second-order Runge-Kutta

schemes, if the Lipschitz condition is not satisfied, there is barely hope that we get higher-order

convergence. Some second-order discrete approximations to particular classes of differential

inclusion was introduced by Veliov in [35, 36, 37].

The other lines of research on discrete approximations of differential inclusions via the

explicit Euler schemes invoke the replacement of the Lipschitz continuity of velocity mappings

by various one-sided Lipschitzian conditions; see, e.g., [8, 9, 10, 11, 22]. Conditions of this

type essentially weaken, from one side, the classical Lipschitz continuity, while from the other

side they encompass dissipativity properties widely used in nonlinear analysis and the theory

of monotone operators. Note to this end the so-called modified one-sided Lipschitzian (MOSL)

condition introduced and applied in [11] to justify a certain strong approximation of solution

sets for differential inclusions by finite-difference ones obtained via the explicit Euler scheme

and to derive in this way a Bogolyubov-type density theorem for the Bolza problem (P ) and

the corresponding convergence of discrete optimal solutions.

The first part of the dissertation is devoted to implicit Euler approximation and optimization

of one-sided Lipschitzian differential inclusions. In this chapter we consider more generalized
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problem (P̂ ) that is the Bolza problem (P ) with functional endpoint constraints of the inequality

and equality types given by

ϕi(x(T )) ≤ 0 for i = 1, . . . ,m, (1.4)

ϕi(x(T )) = 0 for i = m+ 1, . . . ,m+ r. (1.5)

First, We construct discrete approximations of differential inclusions with relaxed one-sided

Lipschitzian (ROSL) right-hand sides by using the implicit Euler scheme for approximating

time derivatives, and then we justify an appropriate well-posedness of such approximations.

Our principal result establishes the uniform approximation of strong local minimizers for the

continuous-time Bolza problem by optimal solutions to the implicitly discretized finite-difference

systems in the general ROSL setting and even by the strengthen W 1,2-norm approximation of

this type in the case intermediate local minimizers under additional assumptions. Finally, we

derive necessary optimality conditions for the discretized Bolza problems via suitable generalized

differential constructions of variational analysis.

The second part of the dissertation focus on Runge-Kutta approximation and optimization

of one-sided Lipschitzian differential inclusions. In this chapter, instead of evaluating the error

estimate, we construct an approximating Runge-Kutta sequence and prove that this sequence

converges to the optimal solution. In this chapter we study the generalized problem (P ) which

only with the geometry endpoints constraints. First we establish well-posedness of the Runge-

Kutta discrete approximations in the sense of W 1,2-norm convergence to the trajectory for

differential inclusions. The Runge-Kutta discrete approximations allows us to build a well-

posed sequence of finite-dimensional optimization problems with a strong convergence of optimal
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solution. Based on the advanced tools of variational analysis and generalized differentiation, we

derive necessary optimality conditions for discrete-time problems.

The obtained results on the well-posedness of discrete approximations and necessary opti-

mality conditions allow us to justify a numerical approach to solve the generalized Bolza problem

for differential inclusions by using discrete approximations constructed via the implicit Euler

scheme and the Runge-Kutta scheme.

In Chapter 2 we introduce some preliminaries from variational analysis and generalized dif-

ferentiation and present some of their properties which are appropriate for the main objective

of this dissertation. The notions included one-sided Lipschitzian condition, normal cones, sub-

differentials, coderivatives, and the review of their important properties. Some preliminaries,

like the solvability of the implicit Euler scheme and necessary conditions for mathematical pro-

grams, used in the proofs of our results. The appropriate tools of generalized differentiation are

introduced by Mordukhovich [29, 30] and then developed and applied in many publications.

Besides Chapter 2, this main result of this thesis contains are presented in Chapter 3 and

Chapter 4. In Chapter 3, We construct discrete approximations of differential inclusions with

relaxed one-sided Lipschitzian (ROSL) right-hand sides by using the implicit Euler scheme

for approximating time derivatives, and then we justify an appropriate well-posedness of such

approximations. Our principal result establishes the uniform approximation of strong local min-

imizers for the continuous-time Bolza problem by optimal solutions to the implicitly discretized

finite-difference systems in the general ROSL setting and even by the strengthen W 1,2-norm

approximation of this type in the case intermediate local minimizers under additional assump-

tions. Finally, we derive necessary optimality conditions for the discretized Bolza problems via

suitable generalized differential constructions of variational analysis and then for the original
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Bolza problem by passing to the limit.

Chapter 4 focus on the Runge-Kutta discrete approximations for the differential inclusion.

We justify the well-posedness of such approximation. We construct well-posed discrete ap-

proximations of the original continuous-time Bolza problem (P ) and establish their strong

convergence to the intermediate local minimizers of (P ). Based on the generalized differen-

tiation, necessary optimality conditions are obtained for the discrete approximation problems

under additional assumption. Finally, in Chapter 5, we introduce some issues we are working

further.
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Chapter 2

Preliminaries

In this chapter we present some basic definitions and preliminary materials of variational analysis

and generalized differentiation, which are widely used in the formulations and proof of the

major results. We refer the reader to [29, 33] for more details, discussions and the extensive

bibliography. Recall that Rn denotes the n-dimensional space with the Euclidean norm | · | and

the closed unit ball IB and that CC(Rn) signifies the space of convex and compact subsets of Rn

endowed with the Pompieu-Hausdorff metric. For a non empty subset Ω ⊂ Rn, the expressions

clΩ, coΩ, clcoΩ stand for the standard notation of closure, convex hull, closed convex hull,

respectively. The distance function associated with an nonempty closed set Ω ⊂ Rn is denoted

by

dist(x,Ω) := min
y∈Ω
|x− y|, x ∈ Rn,

and the distance between two closed sets Ω1,Ω2 ⊂ Rn is given by

dist(Ω1,Ω2) := max
{

max
x∈Ω1

dist(x,Ω2), max
y∈Ω2

dist(y,Ω1)
}
. (2.1)

W 1,p[0, T ], (1 ≤ p ≤ ∞), is the Sobolev space, in particular W 1,2[0, T ] is the Sobolev space of

absolutely continuous functions x : [0, T ]→ Rn with the norm

∣∣∣∣x(·)
∣∣∣∣
W 1,2 := max

t∈[0,T ]

∣∣∣∣x(t)
∣∣∣∣+

(∫ T

0

∣∣∣∣ẋ(t)
∣∣∣∣2) 1

2
,
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Given an arbitrary a set-valued mapping F : Rn →→ Rm, the Painlevé-Kuratowski outer limit of

F as x→ x̄ is defined by

Lim sup
x→x̄

F (x) :=
{
y ∈ Rm

∣∣∣ ∃xk → x̄, yk → y with yk ∈ F (xk), k ∈ IN
}
. (2.2)

The following property introduced in [8] is our standing assumption on the right-hand side

F (·, t) of the differential inclusion in (1.2) playing a crucial role in this dissertation.

A set-valued mapping F : Rn → CC(Rn) is called to be relaxed one-sided Lipschitzian

(ROSL) with constant l ∈ R if for any given x1, x2 ∈ Rn and y1 ∈ F (x1) there exits y2 ∈ F (x2)

such that

〈y1 − y2, x1 − x2〉 ≤ l|x1 − x2|2. (2.3)

Note that the number/modulus l in (2.3) is not required to be positive as in the classical

Lipschitz continuity. The ROSL condition is dramatically weaker the standard Lipschitz conti-

nuity and essentially relaxes dissipativity and other one-sided Lipschitzian properties; see more

discussions and examples in [8, 9, 10, 22].

The next result on the solvability of the implicit Euler scheme

Φh(x) := {y ∈ Rn| y ∈ x+ hF (y)}, h > 0, (2.4)

under the ROSL condition is taken from [4, Theorem 4] (the proof of which is based on the

Kakutani fixed-point theorem) and is useful in what follows. Recall that a set-valued mapping

F is upper semicontinuous (usc) on Rn if for any x̄ ∈ Rn and any ε > 0 there exists γ > 0 such

that F (x) ⊂ F (x̄) + εIB whenever |x− x̄| ≤ γ.

Lemma 2.1 (solvability of the implicit Euler scheme). Let F : Rn → CC(Rn) be usc and
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ROSL on Rn with constraint l ∈ R such that lh < 1. Then for any x, y ∈ Rn, there exists a

solution ȳ ∈ Φh(x) of the implicit Euler scheme (2.4) satisfying the estimate

|ȳ − y| ≤ 1

1− lh
dist(y, x+ hF (y)).

Following [27], we say that a feasible solution x̄(·) to (P ) is an intermediate local minimizer

(i.l.m.) of rank p ∈ [1,∞) for this problem if there are positive numbers ε, α such that J [x̄] ≤

J [x] for any other feasible solutions x(·) to (P ) satisfying the conditions

|x(t)− x̄(t)| < ε as t ∈ [0, T ] and α

∫ T

0
|ẋ(t)− ˙̄x(t)|pdt < ε. (2.5)

The case of α = 0 in (2.5) corresponds to the classical notion of strong local minimum and

surely includes global solutions to (P ). The notion of weak local minimum corresponds to (2.5)

with α 6= 0 and p =∞; see [27, 30] for detailed discussions and examples.

In what follows we need a certain modification of the i.l.m. notion formulated above, which

related to some local relaxation stability of the initial problem (P ). Along with (P ), consider

its extended/relaxed version constructed in the line well understood in the calculus of variations

and optimal control. Let

fF (x, v, t) := f(x, v, t) + δ(v, F (x, t)), (2.6)

where δ(·,Λ) is the indicator function of the set Λ equal to 0 on Λ and to∞ otherwise. Denote by

f̂F (x, v, t) the convexification for fF in the v variable, i.e., the largest convex function majorized

by fF (x, ·, t) for each x and t. The relaxed generalized Bolza problem (R) consists of minimizing
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the functional

Ĵ [x] := ϕ(x(T )) +

∫ T

0
f̂F (x(t), ẋ(t), t)dt (2.7)

over absolutely continuous trajectories x : [0, T ] → Rn under all the endpoint constraints. If

Ĵ [x] <∞, then x(·) satisfies the convexified differential inclusion

ẋ(t) ∈ coF (x(t), t) a.e. t ∈ [0, T ]. (2.8)

Any trajectory for (2.8) is called a relaxed trajectory for (1.2). It is well known that under nat-

ural assumptions involving Lipschitzness of F in x, the following approximation property holds:

Every relaxed trajectory x(·) can be uniformly approximated in [0, T ] by original trajectories

xk(·) starting with the same initial state (but may not satisfy endpoint constraints) such that

lim inf

∫ T

0
f(xk(t), ẋk(t), t) dt ≤

∫ T

0
f̂F (x(t), ẋ(t), t) dt as k →∞. (2.9)

Note that the relaxed problem (R) reduces to the original one (P ) if F (x, t) has convex

and compact values and the integrand f is convex with respect to the velocity variable v; in

particular, when f does not depend on v. Furthermore, a remarkable fact for the continuous-

time problems under consideration consists of the equality between the infimum values of the

coast functionals in (P ) and (R), without taking endpoint constraints into account, even when

f is not convex in v. This fact is known as “hidden convexity" of continuous-valued variational

and control problems and relates to the fundamental results of Bogolyubov’s and Lyapunov’s

types; see, e.g., the books [3, 30, 38] for exact formulations and more discussions. The most

recent extended version of the Bogolyubov theorem for differential inclusion problems of type

(P ) was obtained in [11] under the MOSL condition on F (·, t) mentioned in Chapter 1. This
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discussion makes more natural the following notion taken from [27].

Following [27], we say that a feasible solution x̄(·) to the original problem (P ) is called

a relaxed intermediate local minimum (r.i.l.m.) of rank p ∈ [1,∞) for (P ) if it provides an

intermediate local minimum of rank p to the relaxed problem (R) and satisfies the condition

J [x̄] = Ĵ [x̄].

Moreover, we recall and briefly discuss the generalized differential constructions of variation-

al analysis introduced by the first author [25] and employed in Section 3.4 and 4.4 for deriving

necessary optimality conditions; see the books [29, 33] for more details and references on these

and related constructions. Given a set Ω ⊂ Rn locally closed around x̄ ∈ Ω, the ε-normal cone

to Ω at x̄ is defined by

N̂ε(x̄; Ω) :=
{
v ∈ Rn

∣∣∣ lim sup
x

Ω→x̄

〈v, x− x̄〉
‖x− x̄‖

≤ ε
}
. (2.10)

When ε = 0, we simply denote N̂0(x̄; Ω) as N̂(x̄; Ω) which called regular normal cone (known

also as the Fréchet normal cone) to Ω at x̄. Then the (basic, limiting) normal cone to Ω at x̄ is

defined by

N(x̄; Ω) = Lim sup
x

Ω→x̄,ε↓0

N̂ε(x; Ω) = Lim sup
x

Ω→x̄

N̂(x; Ω). (2.11)

The equivalently defined limiting normal cone is

N(x̄; Ω) = Lim sup
x→x̄

[
cone(x−Π(x,Ω))

]
,

where Π(x,Ω) =
{
w ∈ Ω s.t. |x − w| = dist(x,Ω)

}
is the Euclidean projector of x on Ω, and

where the symbol “cone" stands for the conic hull of the set in question.
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It is easy to check that both N̂(x̄; Ω) and N(x̄; Ω) are cones. However, the set N̂(x̄; Ω) is

convex, while N(x̄; Ω) is not in general. Furthermore, N(x̄; Ω) cone reduces to the classical

normal cone of convex analysis when Ω is convex, which it may take nonconvex values in rather

simple situations as, e.g., for the graph of the function |x| and the epigraph of the function −|x|

on R. Nevertheless the normal cone (2.11) and the related generalized differential constructions

for functions and mappings enjoy comprehensive calculus rules based on variational/extremal

principles of variational analysis; see [29, 33] and the references therein.

There are a lot of calculus results were obtained by Mordukhovich in [29], one of the most

meaningful properties of the limiting normal cone is that it satisfies the intersection rule, see[29,

Corollary 3.37].

Lemma 2.2 (basic intersection rule). Let Ω1,Ω2 ⊂ Rn be such that x̄ ∈ Ω1 ∩ Ω2, and let

the normal qualification condition

N(x̄,Ω1) ∩ (−N(x̄,Ω2)) = 0 (2.12)

be satisfied. Then we have the inclusion

N(x̄,Ω1 ∩ Ω2) ⊂ N(x̄,Ω1) +N(x̄,Ω2) (2.13)

Given now an extended-real-valued and lower semicontinuous function ϕ : Rn → R :=

(−∞,∞] finite at x̄, we define its subdifferential at x̄ geometrically

∂ϕ(x̄) :=
{
v ∈ Rn

∣∣∣ (v,−1) ∈ N((x̄, ϕ(x̄)); epiϕ)
}

(2.14)
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via the normal cone (2.11) to the epigraphical set

epiϕ := {(x, α) ∈ Rn × R| α ≥ ϕ(x)}

of ϕ. The reader can find in [29, 33] various analytical representations and properties of the

subgradient mapping ∂ϕ : Rn →→ Rn used in what follows.

We recall also the symmetric subdifferential construction for a continuous function ϕ : Rn →

R at x̄ defined by

∂0ϕ(x̄) := ∂ϕ(x̄) ∪ (−∂(−ϕ)(x̄)) (2.15)

and employed in Section 3.4 for expressing necessary optimality conditions for equality con-

straints. Note the symmetry relation

∂0(−ϕ)(x̄) = −∂0ϕ(x̄),

which does not hold for the unilateral subdifferential construction (2.14).

Given further a set-valued mapping F : Rn →→ Rm, define its coderivative [29] at (x̄, ȳ) ∈

gphF by

D∗F (x̄, ȳ)(v) :=
{
u ∈ Rn

∣∣ (u,−v) ∈ N
(
(x̄, ȳ); gphF

)}
, v ∈ Rm, (2.16)

generated by the normal cone (2.11) to the graph gphF . The set-valued mappingD∗F (x̄, ȳ) : Rm →→ Rn

is set-valued mapping and clearly positive-homogeneous; Moreover, if the mapping F : Rn → Rm

is single-valued (then we drop ȳ = F (x̄) in the coderivative notation) and strictly differ-

entiable(smooth) around x̄ (which is automatic when it is C1 around this point), then the
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coderivative (2.16) is also single-valued and reduces to the adjoint derivative operator

D∗F (x̄)(v) = {∇F (x̄)T v}, v ∈ Rm.

It is worth noting that the coderivative values in (2.16) are often nonconvex sets due to the

intrinsic nonconvexity of the normal cone on the right-hand side therein. Observe furthermore

that this nonconvex normal cone is taken to a graphical set. Thus its convexification in (2.16),

which reduces to the convexified/Clarke normal cone to the set in question, creates serious

troubles; see Rockafellar [33] and Mordukhovich [29, Subsection 3.2.4] for more details.

In the general nonsmooth and/or set-valued case, the coderivative (2.16) is a positive homo-

geneous multifunction, which enjoys comprehensive calculus rules based on the variational and

extremal principle of variational analysis; see [29, 33]. The results we need in what follows in

known as the coderivative/Mordukhovich criterion (see [28, Theorem 5.7] and [33, Theorem 9.40]

with the references therein): If F is close-graph around (x̄, ȳ), then it is Lipschitz-like around

this point if and only if

D∗F (x̄, ȳ)(0) = {0}. (2.17)

Moreover if F is locally Lipschitzian, the following result is obtained

Lemma 2.3 Let F be of closed graph and bounded around x̄ with F (x̄) 6= ∅. Then each of

the following conditions is necessary and sufficient for F to be locally Lipschitzian around this

point: (i)there exist a neighborhood U of x̄ and a constant l ≥ 0 such that

sup
{
|x∗| : x∗ ∈ D∗F (x, y)(y∗)

}
≤ l|y∗| for all x ∈ U, y ∈ F (x), y∗ ∈ Rm (2.18)
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(ii)D∗F (x̄, ȳ)(0) = {0}, for all ȳ ∈ F (x̄).

Finally in the chapter, we recall the necessary optimality conditions of Lagrange type for the

mathematical programming problems (MP ) with operator and many geometric and functional

constraints. Consider the following problem of mathematical programming (MP ) with finitely

many functional and geometric constraints. Given φj : Rd → R for j = 0, . . . , s, gj : Rd → Rn

for j = 0, . . . , p, and ∆j ⊂ Rd for j = 0, . . . , q, we define (MP ) by

minimize φ0(z) subject to

φj(z) ≤ 0 for j = 0, . . . , s,

gj(z) = 0 for j = 0, . . . , p,

z ∈ ∆j for j = 0, . . . , q.

The next result gives us necessary optimality conditions for local minimizers of problem

(MP ) in the setting needed for the subsequent application to deriving optimality conditions in

the discrete approximation problems (Pk). We express these conditions via our basic normal

cone (2.11) and subdifferential (2.14) constructions above.

Lemma 2.4 (generalized Lagrange multiplier rule for mathematical programs). Let

z̄ be a local optimal solution to problem (MP ). Assume that the functions φj are Lipschitz

continuous around z̄, the mappings gj are continuous differentiable around z̄, and the sets ∆j

are locally closed around this point. Then there exist nonnegative numbers µj for j = 0, . . . , s

as well as vectors ψj ∈ Rn for j = 0, . . . , p and z∗j ∈ Rd for j = 0, . . . , q, not equal to zero

simultaneously, such that we have the conditions

z∗j ∈ N(z̄; ∆j), j = 0, . . . , q,
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µjφj(z̄) = 0, j = 1, . . . , s,

−z∗0 − . . .− z∗q ∈ ∂
( s∑
j=0

µjφj

)
(z̄) +

p∑
j=0

(∇gj(z̄))Tψj ,

where the symbol “AT " indicates the matrix transposition.

Proof. This result follows from necessary optimality conditions given [30, Theorem 5.21] for

problems with a single geometric constraint and the basic intersection rule for the normal cone

(2.11) taken from [29, Theorem 3.4].



www.manaraa.com

17

Chapter 3

Implicit Euler Approximation of One-sided
Lipschitzian Differential Inclusions

3.1 Introduction

This chapter concerns the study of the following generalized Bolza problem (P̃ ) governed by

differential inclusions with the geometric and functional endpoint constraints:

minimize J [x] := ϕ0

(
x(T )

)
+

∫ T

0
f
(
x(t), ẋ(t), t

)
dt (3.1)

over absolutely continuous trajectories x : [0, T ]→ Rn satisfying the differential inclusion

ẋ(t) ∈ F
(
x(t), t

)
a.e. t ∈ [0, T ] with x(0) = x0 ∈ Rn (3.2)

subject to the geometric and functional endpoint constraints given by, respectively,

x(T ) ∈ Ω ⊂ Rn, (3.3)

ϕi(x(T )) ≤ 0 for i = 1, . . . ,m, (3.4)

ϕi(x(T )) = 0 for i = m+ 1, . . . ,m+ r. (3.5)

Here x0 is a fixed n-vector, F : Rn × [0, T ] →→ Rn is a set-valued mapping/multifunction, Ω is

an nonempty set, f and ϕi for i = 0, . . . ,m+ r are real-valued functions.

In this chapter we exploit a weaker property than MOSL known as the relaxed one-sided Lip-
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schitz (ROSL) condition; see below. The ROSL property of set-valued mappings was introduced

by Tzanko Donchev in [8] under a different name and has already been employed in the studies

of various aspects of analysis of set-valued mappings, differential inclusions, and their discrete

approximations; see, e.g., [4, 9, 10, 12]. In particular, the paper [10] contains an extension to

the ROSL case of the fundamental Filippov theorem about relationships between trajectories

and “quasitrajectories" of Lipschitzian differential inclusions and provides applications of this

result to the stability analysis of the explicit Euler scheme. In [4], similar and related solvability

and stability results were developed for the parameterized implicit Euler scheme

Φh(x) := {y ∈ Rn| y ∈ x+ hF (y)}, h > 0, (3.6)

generated by ROSL mappings F with compact and convex values. Note that the implicit

framework of (3.6) is essentially more involved in comparison with the explicit one

Φh(x) := {y ∈ Rn| y ∈ x+ hF (x)}, h > 0, (3.7)

studied and applied in [9, 10, 12] and other publications.

The main goal of this paper is to use the implicit Euler scheme (3.6) to construct and

investigate the discrete approximations

xkj+1 ∈ xkj + hkF (xkj+1, tj+1), k ∈ IN := {1, 2, . . .} with hk ↓ 0 as k →∞, (3.8)

of the ROSL differential inclusion (3.2) and the generalized Bolza problem (P̃ ) for it with

establishing the strong convergence of discrete approximations (in the sense specified below)

and deriving necessary optimality conditions for their optimal solutions. To the best of our
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knowledge, the results obtained in what follows are new for discrete approximations constructed

via the implicit Euler scheme even for the case of unconstrained differential inclusions satisfying

the classical Lipschitz condition with respect to state variables.

We develop new results in the aforementioned directions outlined in what follows. Sec-

tion 3.2 presents a constructive procedure allowing us to strongly approximate in the norm

topology of C[0, T ] a given feasible trajectory x̄(·) of the differential inclusion (3.2) by feasible

solutions to the implicit Euler finite-difference inclusions (3.8) piecewise linearly extended to

[0, T ]. Furthermore, we justify here even stronger W 1,2[0, T ]-norm approximation of x̄(·) by

feasible extended discrete trajectories in the following two major cases: either F is ROSL and

locally graph-convex, or F is locally Lipschitzian. Some counterparts of this result involving

the explicit Euler scheme (3.7) can be found (with different proofs) in [27, 30] for Lipschitzian

differential inclusions and in [11] for those satisfying the MOSL condition. We are not familiar

with any results of this type (involving either the C[0, T ] or W 1,2[0, T ] convergence) for discrete

approximations of differential inclusions based on the implicit Euler scheme.

In Section 3.3 we construct a sequence of finite-difference Bolza type problems (P̃k) as

k ∈ IN with the dynamic constraints given by the implicit Euler scheme (3.8) under appropriate

approximations of the cost functional (3.1) and the endpoint constraints in (3.3)–(3.5). Then

we show that optimal solutions to (P̃k) and their slight modifications exist for all large k ∈ IN

and norm converge in the C[0, T ] topology for the case of strong local minimizers of (P̃ ) in the

general ROSL setting and the W 1,2[0, T ] topology in the case of intermediate local minimizers

of (P̃ ) under the additional assumptions on these minimizers imposed in Section 3.2. The

obtained results seem to be the first achievements in this direction for the implicit Euler scheme

(3.8). It is worth mentioning however that our approach to the strong approximation and
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convergence results obtained in Sections 3.2 and 3.3 require, along with the ROSL condition

on the differential inclusion, the unform boundedness of the velocity sets. This does not allow

us to cover the corresponding developments presented of [6, 7] for discrete approximations of

control problems governed by Moreau’s sweeping process, which is described by a dissipative

while intrinsically unbounded differential inclusion studied in [6] via the explicit Euler scheme

by exploiting certain specific features of the sweeping process generated by controlled moving

sets.

In addition to the well-posedness results for discrete approximations of (P̃ ) via the implic-

it Euler scheme obtained in Sections 3.2 and 3.3, we derive in Section 3.4 under fairly mild

assumptions necessary conditions for optimal solutions to the nonsmooth discrete approxima-

tions problems (P̃k) associated with the implicit discrete inclusions (3.8) that are different from

necessary optimality conditions for the corresponding problems associated with explicit Euler

counterparts. Due to the established convergence of discrete optimal solutions, the necessary

optimality conditions for problems (P̃k) obtained in this way can be treated as suboptimali-

ty (almost optimality) conditions for the original Bolza problem (P̃ ) and can be also viewed

as a certain justification of numerical algorithms based on discrete approximations. The final

Section 3.5 presents necessary optimality conditions for relaxed intermediate minimizers to the

original Bolza problem (P̃ ) by passing to the limit from those obtained necessary conditions for

discrete problems in Section 3.4.

Finally, section 3.5 is devoted to the limiting procedure in discrete approximations that

allows us to derive necessary optimality conditions for an i.r.l.m. to the original Bolza problem

(P̃ ). The obtained results on the well-posedness of discrete approximations and necessary opti-

mality conditions allow us to justify a numerical approach to solve the generalized Bolza problem
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for one-sided Lipschitzian differential inclusions by using discrete approximations constructed

via the implicit Euler scheme.

3.2 Strong Approximation via Implicit Euler Scheme

In this section we justify the possibility to strongly approximate (in the norm topology of ei-

ther C[0, T ] or W 1,2[0, T ]) feasible trajectories of the ROSL inclusion (3.2) constructed via the

implicit Euler scheme. Given an arbitrary trajectory x̄(·) of (3.2), we impose the following as-

sumptions of F near x̄(·) standing throughout Sections 3.2 and 3.3. For simplicity, suppose that

the uniform boundedness and ROSL moduli below are constant on [0, T ]. They can obviously

be replaced by the continuous functionsmF (t) and l(t) on this compact interval while the proofs

of the main results presented in Sections 3.2 and 3.3 can be modified to more general cases of

the Riemann and Lebesgue integrability.

(H1) There exists an open set U ⊂ Rn and a number mF > 0 such that x̄(t) ∈ U for all

t ∈ [0, T ] and the multifunction F : U × [0, T ] → CC(Rn) from (3.2) satisfies the uniform

boundedness condition

F (x, t) ⊂ mF IB for all x ∈ U, a.e. t ∈ [0, T ].

(H2) Given U from (H1), for all x1, x2 ∈ U , a.e. t ∈ [0, T ], and y1 ∈ F (x1, t) there exists

y2 ∈ F (x2, t) such that we have the relaxed one-sided Lipschitzian condition

〈y1 − y2, x1 − x2〉 ≤ l|x1 − x2|2.

(H3) The multifunction F (·, t) is continuous on the neighborhood U from (H1) for a.e. t ∈ [0, T ]
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while F (x, ·) is a.e. continuous on [0, T ] uniformly in x ∈ U with respect to the Pompieu-

Hausdorff metric.

We now construct a finite-difference approximation of the differential inclusion in (3.2) by

using the implicit Euler method to replace the time derivative by

x(t+ h) ∈ x(t) + hF (x(t+ h), t) as h ↓ 0.

To formalize this process, for any k ∈ IN define the discrete grid/mesh on [0, T ] by Tk :=(
tj
∣∣ j = 0, 1, . . . , k

)
with t0 := 0, tk := T , and stepsize

hk := T/k = tj+1 − tj .

Then the corresponding discrete inclusions associated with (3.2) via the implicit Euler scheme

are constructed as follows:

xkj+1 ∈ xkj + hkF (xkj+1, tj+1) for j = 0, . . . , k − 1, (3.9)

where the starting vector x0 in (3.9) is taken from (3.2).

The next theorem justifies the aforementioned strong W 1,2[0, T ]-approximation of feasible

solutions to (3.2) by those for the discrete inclusions (3.9).

Theorem 3.1 (discrete approximation of ROSL differential inclusions). Let x̄(·) be

a feasible trajectory for (3.2) such that ˙̄x(t) is Riemann integrable on [0, T ] and the standing

assumptions (H1)–(H3) are satisfied. Then the following assertions hold:

(i) There is a sequence {zkj |j = 0, . . . , k} of feasible solutions to the discrete inclusions (3.9)
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such that their piecewise linearly extensions to [0, T ] converge to x̄(t) uniformly on [0, T ],

i.e., in the norm topology of C[0, T ].

(ii) Assume in addition that either the graph of F (·, t) is locally convex around (x̄(t), ˙̄x(t)),

or F (·, t) is locally Lipschitzian around x̄(t) for a.e. t ∈ [0, T ]. Then there is a sequence

{zkj |j = 0, . . . , k} of feasible solutions to (3.9) such that the piecewise constantly extended

to [0, T ] discrete velocity functions

vk(t) :=
zkj+1 − zkj

hk
, t ∈ (tj , tj+1], j = 0, . . . , k − 1, (3.10)

converge to ˙̄x(·) as k → ∞ in the norm topology of L2[0, T ], which is equivalent to the

W 1,2[0, T ]-norm convergence of the piecewise linear functions zk(t) represented by

zk(t) = x0 +

∫ t

0
vk(s) ds for all t ∈ [0, T ], k = 1, 2, . . . . (3.11)

Proof. Fix an arbitrary feasible trajectory x̄(t) for (3.2) from the formulation of the theorem

and denote x̄j := x̄(tj). Taking into account the density of step functions in L1[0, T ], we can find

without loss of generality a sequence of functions wk(·) on [0, T ] such that wk(t) are constant

on (tj , tj+1] and wk(t) converge to ˙̄x(t) as k → ∞ in the norm topology of L1[0, T ]. It follows

from (H1) that

|wk(t)| ≤ mF + 1 for all t ∈ [0, T ] and k ∈ IN.
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Define further the sequences

wkj := wk(tj) for j = 1, . . . , k and ξk :=

∫ T

0
| ˙̄x(t)− wk(t)| dt→ 0 as k →∞ (3.12)

and for each k ∈ IN form recurrently the collection of vectors {yk0 , . . . , ykk} by

ykj+1 := ykj + hkw
k
j+1 for j = 0, . . . , k − 1 with yk0 = x0. (3.13)

Note that the continuous-time vector functions

yk(t) := x0 +

∫ t

0
wk(s) ds, 0 ≤ t ≤ T,

are piecewise linear extensions of the discrete ones (3.13) on [0, T ] satisfying the estimate

|yk(t)− x̄(t)| ≤
∫ t

0
|wk(s)− ˙̄x(s)| ds ≤ ξk for all t ∈ [0, T ], k ∈ IN, (3.14)

where ξk is taken from (3.12). Now we construct a sequence of discrete trajectories for (3.9) by

the following algorithmic procedure.

To define such trajectories zk = (zk0 , . . . , z
k
k) of (3.9), put zk0 := x0 and suppose that the

vectors zkj have been already found. Then for any k ∈ IN sufficiently large (i.e., when hk is small)

we use the solvability result from Lemma 2.1 valid under assumptions (H2) and (H3) and solve

the discrete inclusions (3.9) for zkj+1. Taking into account the error estimate in Lemma 2.1, the

construction of ykj in (3.13), and the corresponding properties of the distance (2.1), we deduce
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that the vector zkj+1 satisfies the discrete inclusion

zkj+1 ∈ zkj + hkF (zkj+1, tj+1) (3.15)

and the following relationships for each j ∈ {1, . . . , k − 1} and all (large) k ∈ IN :

|zkj+1 − ykj+1| ≤
1

1− lhk
dist

(
ykj+1, z

k
j + hkF (ykj+1, tj+1)

)
≤ 1

1− lhk
dist(ykj+1, y

k
j + hkF (ykj+1, tj+1))

+
1

1− lhk
dist

(
ykj + hkF (ykj+1, tj+1), zkj + hkF (ykj+1, tj+1)

)
≤
|zkj − ykj |
1− lhk

+
hk

1− lhk
dist

(ykj+1 − ykj
hk

, F (ykj+1, tj+1)
)

=
|zkj − ykj |
1− lhk

+
hk

1− lhk
dist

(
wkj+1, F (ykj+1, tj+1)

)
.

Thus we arrive at the estimate valid for all j = 0, . . . , k − 1 and k ∈ IN :

|zkj+1 − ykj+1| ≤
|zkj − ykj |
1− lhk

+
hk

1− lhk
dist

(
wkj+1, F (ykj+1, tj+1)

)
. (3.16)

Proceeding further by induction implies that

|zkj+1 − ykj+1| ≤ hk
j+1∑
m=1

( 1

1− lhk

)j+2−m
dist

(
wkm, F (ykm, tm)

)
,

which yields by choosing k ∈ IN with lhk < 1/2 that

|zkj+1 − ykj+1| ≤ hk
j+1∑
m=1

(1 + 2lhk)
j+2−mdist

(
wkm, F (ykm, tm)

)
≤ hke2lT

j+1∑
m=1

dist(wkm, F (ykm, tm)).

(3.17)
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We recall next the average modulus of continuity of F defined by

τ(F ;h) := sup x∈U
∫ T

0
sup

{
dist(F (x, t′), F (x, t′′))

∣∣∣ t′, t′′ ∈ [t− h

2
, t+

h

2

]}
dt

and consider the quantities ζk with the estimates

ζk :=

k∑
m=1

hkdist
(
wkm, F (ykm, tm)

)
=

k∑
m=1

∫ tm

tm−1

dist(wkm, F (ykm, tm))

≤
k∑

m=1

∫ tm

tm−1

dist
(
wkm, F (ykm, t)

)
+ τ(F ;hk), k ∈ IN.

(3.18)

It is well known (see, e.g., [30, Proposition 6.3]) that the a.e. continuity of F (x, ·) on [0, T ]

uniformly in x ∈ U assumed in (H3) is equivalent to the convergence τ(F ;hk)→ 0.

Let us show next that
k∑

m=1

∫ tm

tm−1

dist(wkm, F (ykm, t))→ 0 as k →∞. Taking into account that

x̄(·) is a feasible trajectory for the differential inclusion (3.2) and that wk(·) → ˙̄x(·) strongly

in L1[0, T ] and remembering also that for each k ∈ IN the functions wk(t) are constant on the

intervals (tm−1, tm], m = 1, 2, . . ., and that ˙̄x(t) is Riemann integrable (that is, a.e. continuous)

on [0, T ], we can find t̃m ∈ (tm−1, tm] such that

˙̄x(t̃m) ∈ F (x̄(t̃m), t̃m) and
k∑

m=1

∫ T

0
| ˙̄x(t̃m)− wk(t)| dt ≤ 2ξk.
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This readily leads us to the following inequalities:

k∑
m=1

∫ tm

tm−1

dist(wkm, F (ykm, t))dt

≤
k∑

m=1

∫ tm

tm−1

[
dist(wkm, F (x̄m, t)) + dist(F (x̄m, t), F (ykm, t))

]
dt

≤
k∑

m=1

∫ tm

tm−1

[
dist(wkm, F (x̄(t̃m), t̃m)) + dist(F (x̄m, t), F (x̄(t̃m), t̃m))

+dist(F (x̄m, t), F (ykm, t))
]
dt

≤
k∑

m=1

∫ tm

tm−1

[
|wk(t)− ˙̄x(t̃m)|+ dist(F (x̄m, t), F (x̄(t̃m), t̃m))

+dist(F (x̄m, t), F (ykm, t))
]
dt

≤ 2ξk +

k∑
m=1

∫ tm

tm−1

[
dist(F (x̄m, t), F (x̄(t̃m), t̃m)) + dist(F (x̄m, t), F (ykm, t))

]
dt

≤ 2ξk + τ(F ;hk) +

k∑
m=1

∫ tm

tm−1

[
dist(F (x̄(tm), tm), F (x̄(t̃m), t̃m))

+dist(F (x̄m, t), F (ykm, t))
]
dt.

Under the assumption (H3) we have
k∑

m=1

∫ tm

tm−1

dist(wkm, F (ykm, t)) → 0. By employing (3.12)

and the definition of ζk in (3.18), it gives us the convergence ζk → 0 as k →∞.

Using this and the last inequality in (3.17) allows us to conclude that

|zkj+1 − ykj+1| ≤ ζke2lT for all j = 0, . . . , k − 1 and all k ∈ IN. (3.19)

Furthermore, we easily get the estimates

|zkj+1 − x̄j+1| ≤ ζke2lT + |ykj+1 − x̄j+1| ≤ ζke2lT + ξk =: ηk, (3.20)

where ηk → 0 due to (3.12) and ζk → 0 as k →∞.
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Considering next the the piecewise linear functions zk(·) built in (3.11) by using the discrete

velocity vk(·) from (3.10), we get from (3.10) and (3.15) that

żk(t) = vkj =
zkj − zkj−1

hk
∈ F

(
zk(tj), tj

)
on (tj−1, tj ], j = 1, . . . , k.

It follows from the uniform boundedness of F in (H1) that there is a subsequence of {żk(·)}

(without relabeling) that converges to some function in L1[0, T ], which cannot be anything but

˙̄x(t) due to the relationships in (3.20) established above. Thus żk(·)→ ˙̄x(·) weakly in L1[0, T ] as

k →∞. The latter is equivalent to the uniform convergence zk(·)→ x̄(t) by the Newton-Leibniz

formula (3.11), and so we get (i).

Now we justify assertion (ii) proving that in fact żk(·)→ ˙̄x(·) as k →∞ strongly in L1[0, T ]

provided that either the graph of F (·, t) is convex around (x̄(t), ˙̄x(t)), or the mapping x 7→ F (x, t)

is locally Lipschitzian around x̄(t) for a.e. t ∈ [0, T ].

First we examine the case when the graph of F (·, t) is locally convex. The classical Mazur’s

weak closure theorem tells us that there is a sequence of convex combinations of żk(·), which

converges to ˙̄x(·) in the norm topology of L1[0, T ] and thus contains a subsequence (no rela-

beling) converging to ˙̄x(t) for a.e. t ∈ [0, T ]. Taking into account the graph convexity of F (·, t)

and the piecewise constant nature of żk(t) and assuming without loss of generality that for each

element of the sequence of convex combinations the corresponding partition of the interval is

a subpartition of the previous one, we conclude that all the elements of the aforementioned

sequence of convex combinations are feasible trajectories of the discrete approximation systems

for any k ∈ IN . Therefore we get a sequence of feasible solutions to the discrete inclusions (3.9)

whose piecewise linear extensions on [0, T ] converges to ˙̄x(·) strongly in L1[0, T ]. Keeping for
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simplicity the notation żk(·) for the elements of this sequence allows us to write

αk :=

∫ T

0
|żk(t)− ˙̄x(t)| dt→ 0 as k →∞. (3.21)

To complete the proof of the theorem in the convex graph case, it remains to verify the the

convergence of {żk(·)} to ˙̄x(·) in the norm topology of L2[0, T ]. By the constructions above and

assumption (H1), it is implied by the following relationships:

k∑
j=1

∫ tj

tj−1

∣∣∣zk(tj)− zk(tj−1)

hk
− ˙̄x(t)

∣∣∣2dt
=

k∑
j=1

max
(
|vkj |+ | ˙̄x(t)|

)∫ tj

tj−1

|vkj − ˙̄x(t)| dt

≤ 2mF

k∑
j=1

∫ tj

tj−1

|vkj − ˙̄x(t)| dt = 2mFαk,

(3.22)

where αk is taken from (3.21). This justifies the W 1,2[0, T ]-norm convergence of the extended

discrete trajectories {zk(·)} from (3.11) in the first case under consideration.

Let us finally consider the other case in (ii) when F (·, t) is locally Lipschitzian around x̄(t)

for a.e. t ∈ [0, T ]. Then for all j ∈ {1, . . . , k − 1} we have the estimates

|zkj+1 − zkj − hkwj+1| ≤
1

1− lhk
dist(zkj + hkwj+1, z

k
j + hkF (zkj + hkwj+1, tj+1))

≤ 1

1− lhk
dist(hkwj+1, hkF (zkj + hkwj+1, tj+1))

≤ hk
1− lhk

[
dist(wj+1, F (ykj + hkwj+1, tj+1))

+dist(F (ykj + hkwj+1, tj+1), F (zkj + hkwj+1, tj+1))
]

≤ hk
1− lhk

[
l|zkj − ykj |+ dist(wj+1, F (yj+1, tj+1))

]
.

(3.23)
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Combining (3.23) with (3.19) gives us

∫ T

0
|żk(t)− ẏk(t)| dt =

k∑
j=1

hk|vkj − wkj |

≤ 1

1− lhk

[
lhk

k∑
j=1

|zkj−1 − ykj−1|+
k∑
j=1

hkdist(wkj , F (ykj , tj))
]

≤ 2(lT ζke
2lT + ζk) = 2ζk(lT e

2lT + 1)→ 0 as k →∞,

where ζk → 0 is taken from (3.18). Taking further into account that

∫ T

0
|żk(t)− ˙̄x(t)| dt ≤

∫ T

0
|żk(t)− ẏk(t)| dt+

∫ T

0
|ẏk(t)− ˙̄x(t)| dt

and using the convergence ξk → 0 in (3.12) with ẏk(t) = wk(t) tell us that the L1[0, 1]-norm

convergence of {żk(·)} in (3.21) holds in the second case under consideration. Applying now

(3.22) justifies (ii) in this case and thus completes proof of the theorem.

3.3 Strong Convergence of Discrete Optimal Solutions

In this section we construct a sequence of well-posed discrete approximations of the Bolza prob-

lem (P̃ ) for ROSL differential inclusions and justify the norm convergence in either C[0, T ] or

W 1,2[0, T ] topology of their optimal solutions to either a strong local minimizer or an interme-

diate relaxed local minimizer x̄(·) of (P̃ ), respectively. In addition to our standing assumptions

(H1)–(H3) on the right-hand side F in (3.2) and those (if needed) from Theorem 3.1 formulated

now around the given local minimizer, the following ones are imposed here on the functions f

and ϕ0 in the Bolza cost functional (3.1) as well as on the functions ϕi, i = 1, . . . ,m + r, and

the set Ω in the endpoint constraints (3.3)–(3.5).

(H4) The function f(x, v, ·) is a.e. continuous on [0, T ] and bounded uniformly in (x, v) ∈



www.manaraa.com

31

U × (mFB). Furthermore, there exists ν > 0 such that the function f(·, ·, t) is continuous

on the set

Aν(t) =
{

(x, v) ∈ U × (mF + ν)IB
∣∣ v ∈ F (x, t′) for some t′ ∈ (t− ν, t]

}

uniformly in t on the interval [0, T ].

(H5) The cost function ϕ0 is continuous on U , while the constraint functions ϕi are Lipschitz

continuous on U for all i = 1, . . . ,m + r. Furthermore, the endpoint constraint set Ω is

locally closed around x̄(T ).

Given a r.i.l.m. x̄(·) in (P ), suppose without loss of generality (due to (H1)) that α = 1

and p = 2 in (2.5) and the definition of r.i.l.m.. Denote by L > 0 a common Lipschitz constant

for the functions ϕi, i = 1, . . . ,m + r, on U and take the sequence {ηk} in (3.20) constructed

via the approximation of the local optimal solution x̄(·) under consideration. Then we define a

sequence of discrete approximation problems (P̃k), k ∈ IN , as follows:

minimize Jk[xk] : = ϕ0(xk(tk)) + hk

k∑
j=1

f
(
xk(tj),

xk(tj)− xk(tj−1)

hk
, tj

)
+

k∑
j=1

∫ tj

tj−1

∣∣∣xk(tj)− xk(tj−1)

hk
− ˙̄x(t)

∣∣∣2dt (3.24)

over trajectories xk = (xk0, . . . , x
k
k) of the discrete inclusions (3.9) subject to the constraints

|xk(tj)− x̄(tj)|2 ≤
ε2

4
for j = 1, . . . , k, (3.25)

k∑
j=1

∫ tj

tj−1

∣∣∣xk(tj)− xk(tj−1)

hk
− ˙̄x(t)

∣∣∣2dt ≤ ε

2
, (3.26)
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xkk ∈ Ωk := Ω + ηkIB, (3.27)

ϕi(x
k
k) ≤ Lηk for i = 1, . . . ,m, (3.28)

− Lηk ≤ ϕi(xkk) ≤ Lηk for i = m+ 1, . . . ,m+ r, (3.29)

where ε > 0 is fixed and taken from (2.5) for the given r.i.l.m. x̄(·).

If x̄(·) is a given strong local minimizer for (P̃ ) with f = f(x, t), we construct a simplified

sequence of discrete approximations problems (P̌k) as follows:

minimize J̌k[xk] := ϕ0(xk(tk)) + hk

k∑
j=1

f(xk(tj), tj) +

k∑
j=1

|xk(tj)− x̄(tj)|2 (3.30)

subject to the constraints (3.25)–(3.29) with ηk taken from (3.20).

The next theorem shows that problems (P̃k) and (P̌k) admit optimal solutions for all large

k ∈ IN and that extended discrete optimal solutions to these problems converge to x̄(·) in the

corresponding norm topology of either C[0, T ] or W 1,2[0, T ] depending on the type of local

minima (strong or intermediate) which (P̃ ) achieves at x̄(·).

Theorem 3.2 (strong convergence of discrete optimal solutions). Let x̄(·) be a Rie-

mann integrable local optimal solution to the original Bolza problem (P̃ ) under the validity of

assumptions (H1)-(H5) around x̄(·). The following assertions hold:

(i) If x̄(·) is a strong local minimizer for (P̃ ) with f = f(x, t), then each problem (P̌k) admits

an optimal solution x̄k(·) for large k ∈ IN and the sequence {x̄k(·)} piecewise linearly

extended to [0, T ] converges to x̄(·) as k →∞ in the norm topology of C[0, T ].

(ii) If x̄(·) is a r.i.l.m. in (P̃ ) and the assumptions of Theorem 3.1(ii) are satisfied for x̄(·),

then each problem (P̃k) admits an optimal solution x̄k(·) whenever k ∈ IN is sufficiently
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large and the sequence {x̄k(·)} piecewise linearly extended to [0, T ] converges to x̄(·) as

k →∞ in the norm topology of W 1,2[0, T ].

Proof. We verify the existence of optimal solutions to problems (P̃k) and (P̌k) in a parallel way.

Observe first that both (P̃k) and (P̌k) admit feasible solutions for all k ∈ IN sufficiently large.

Indeed, take for each k the discrete trajectories zk := (zk0 , . . . , z
k
k) constructed in Theorem 3.1(i)

to approximate the r.i.l.m. x̄(·) and in Theorem 3.1(ii) to approximate the r.i.l.m. x̄(·). Then

both these functions satisfy the discrete inclusion (3.9), and it remains to verify that the cor-

responding zk fulfills the constraints in (3.25), (3.27)–(3.29) in the case of (P̌k) and those in

(3.25)–(3.29) in the case of (P̃k). The validity of (3.25) and (3.27) in both cases follows from

(3.20) for large k, while the validity of the additional constraint (3.26) for (P̃k) follows from

(3.21). The fulfillment of the inequality constraints in (3.28) and (3.29) for zkk follows by these

arguments from the validity of (3.4) and (3.5) for x̄(T ), respectively, and the local Lipschitz

continuity of the endpoint functions

|ϕi(zkk)− ϕi(x̄(T ))| ≤ L|zkk − x̄(T )| ≤ Lηk, i = 1, . . . ,m+ r.

Thus for each k ∈ IN (omitting the expression “for all large k" in what follows) the sets of

feasible solutions to (P̃k) and (P̌k) are nonempty. It is clear from the construction of (P̃k) and

(P̌k) and the assumptions made that each of these sets is closed and bounded. This ensures the

existence of optimal solutions to (P̃k) by the classical Weierstrass existence theorem due to the

continuity of the functions ϕ0 and f in (3.24) and (3.30) .

Next we proceed with the proof of the strong W 1,2[0, T ]-convergence in (ii) for any sequence

of the discrete optimal solutions {x̄k(·))} in (P̃k) piecewise linearly extended to the continuous-
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time interval [0, T ]. To this end let us first show that

lim inf
k→∞

Jk[x̄
k] ≤ J [x̄] (3.31)

for the optimal values of the cost functional in (3.24). It follows from the optimality of x̄k(·) for

(P̃k) and the feasibility of zk(·) taken from the proof of (i) for this problem that Jk[x̄k] ≤ Jk[zk]

for each k. To get (3.31), it suffices to show therefore that

Jk[z
k]→ J [x̄] as k →∞ (3.32)

including the verification of the existence of the limit. We have from (3.24) that

Jk[z
k] = ϕ0(zk(tk)) + hk

k∑
j=1

f
(
zk(tj),

zk(tj)− zk(tj−1)

hk
, tj

)

+

k∑
j=1

∫ tj

tj−1

∣∣∣zk(tj)− zk(tj−1)

hk
− ˙̄x(t)

∣∣∣2dt
and deduce from the convergence zk(tk) → x̄(T ) and the continuity assumption on ϕ0 in (H5)

the convergence ϕ0(zk(tk)) → ϕ0(x̄(T )) as k → ∞ of the terminal cost function in (3.24).

Furthermore, it follows from (3.21) that

k∑
j=1

∫ tj

tj−1

∣∣∣zk(tj)− zk(tj−1)

hk
− ˙̄x(t)

∣∣∣2dt→ 0 as k →∞.

To justify (3.32), we only need to check that

hk

k∑
j=1

f
(
zk(tj),

zk(tj)− zk(tj−1)

hk
, tj

)
→
∫ T

0
f(x̄(t), ˙̄x(t), t)dt as k →∞.
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The continuity assumptions on f in (H4) imply without loss of generality that

∣∣∣f(zk(tj),
zk(tj)− zk(tj−1)

hk
, tj)− f(zk(tj),

zk(tj)− zk(tj−1)

hk
, t)
∣∣∣ ≤ ε

T

for all k ∈ IN and a.e. t ∈ [0, T ]. Employing now Lebesgue’s dominated convergence theorem

together with Theorem 3.1(ii) tells us that

hk

k∑
j=1

f
(
zk(tj),

zk(tj)− zk(tj−1)

hk
, tj

)
=

k∑
j=1

∫ tj

tj−1

f(zk(tj), v
k(t), tj) dt

∼
k∑
j=1

∫ tj

tj−1

f(zk(tj), v
k(t), t) dt ∼

k∑
j=1

∫ tj

tj−1

f(x̄(t), vk(t), t) dt

=

∫ T

0
f(x̄(t), vk(t), t) dt ∼

∫ T

0
f(x̄(t), ˙̄x(t), t) dt,

where the sign ’∼’ is used to indicate the equivalence as k →∞. Thus we get (3.32).

To proceed further, consider the numerical sequence

ck :=

∫ T

0
| ˙̄xk(t)− ˙̄x(t)|2dt, k ∈ IN, (3.33)

and verify that ck → 0 as k →∞. Since the numerical sequence in (3.33) is obviously bounded, it

has limiting points. Denote by c ≥ 0 any of them and show that c = 0. Arguing by contradiction,

suppose that c > 0. It follows from the uniform boundedness assumption (H1) and basic

functional analysis that the sequence { ˙̄xk(·)} contains a subsequence (without relabeling), which

converges in the weak topology of L2[0, T ] to some v(·) ∈ L2[0, T ]. Considering the absolutely

continuous function

x̃(t) := x0 +

∫ t

0
v(s) ds, 0 ≤ t ≤ T,

we deduce from the Newton-Leibniz formula that the sequence of the extended discrete trajec-
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tories x̄k(·) converges to x̃(·) in the weak topology of W 1,2[0, T ], for which we have ˙̃x(t) = v(t)

for a.e. t ∈ [0, T ]. By invoking Mazur’s weak closure theorem, it follows from the convexity of

the sets F (x, t) and the continuity of F (·, t) that the limiting function x̃(·) satisfies the differen-

tial inclusion (3.2). Furthermore, the construction of the discrete approximation problems (P̃k)

with ηk → 0 therein ensures that x̃(·) is a feasible trajectory for the original Bolza problem (P̃ ),

and therefore for the relaxed (R) as well.

Employing again Mazur’s weak closure theorem, we find a sequence of convex combination

of ˙̄xk(·) converging to ˙̃x(·) in the norm topology of L2[0, T ] and hence a.e. on [0, T ] along some

subsequence. Taking into account the construction of f̂F as the convexification of fF in (2.6)

with respect to the velocity variable, we arrive at the inequality

∫ T

0
f̂F (x̃(t), ˙̃x(t), t) dt ≤ lim inf

k→∞
hk

k∑
j=1

f
(
x̄kj ,

x̄kj − x̄kj−1

hk
, tj

)
. (3.34)

Define now the integral functional on L2[0, T ] by

I[v] :=

∫ T

0
|v(t)− ˙̄x|2dt (3.35)

and show it is convex on this space. Indeed, picking any v(·), w(·) ∈ L2[0, T ] and λ ∈ [0, 1] and

using the Cauchy-Schwartz inequality gives us

I[λv + (1− λ)w] =

∫ T

0
|λ(v(t)− ˙̄x(t)) + (1− λ)(w(t)− ˙̄x(t))|2dt

≤
∫ T

0

[
λ|v(t)− ˙̄x(t)|+ (1− λ)|w(t)− ˙̄x(t)|

]2
dt

= λ

∫ T

0
|v(t)− ˙̄x(t)|2dt+ (1− λ)

∫ T

0
|w(t)− ˙̄x(t)|2dt

= λI[v] + (1− λ)I[w],
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which justifies the convexity and hence the lower semicontinuity of (3.35) in the weak topology

of L2[0, T ]. It allows us to conclude that

∫ T

0
| ˙̃x(t)− ˙̄x(t)|2dt ≤ lim inf

k→∞

∫ T

0
| ˙̄xk(t)− ˙̄x(t)|2dt

= lim inf
k→∞

k∑
j=1

∫ tj

tj−1

∣∣∣ x̄k(tj)− x̄k(tj−1)

hk
− ˙̄x(t)

∣∣∣2dt.
Employing this and passing to the limit in the constraints (3.25) and (3.26) for x̄k(·) yield

|x̃(t)− x̄(t)| ≤ ε

2
for t ∈ [0, T ] and

∫ T

0
| ˙̃x(t)− ˙̄x(t)|2dt ≤ ε

2
,

which verifies that the feasible trajectory x̃(·) for (R) belongs to the prescribed W 1,2[0, T ]

neighborhood of the r.i.l.m. x̄(·) from the definition.

Now we are able to pass to the limit in the cost functional formula (3.24) in (P̃k) for x̄k(·)

by using (3.31), (3.34), and the assumption on ck → c > 0 in (3.33). It gives us

Ĵ [x̃] = ϕ(x̃(T )) +

∫ T

0
f̂F (x̃(t), ˙̃x(t), t) dt ≤ lim inf

k→∞
Jk[x̄

k] + c < J [x̄] = Ĵ [x̄],

which contradicts the choice of x̄(·) as a r.i.l.m. for the original Bolza problem (P̃ ). Thus we

have ck → 0 as k →∞ showing in this way that x̄k(·)→ x̄(·) strongly in W 1,2[0, T ].

To complete the proof of the theorem, it remains to justify the strong C[0, T ] convergence

in (i) of discrete optimal trajectories for (P̌k) in the case when x̄(·) is a strong local minimizers

of the continuous-time Bolza problem (P̃ ). Note that due to the convexity of F (x, t) and the

independence of the integrand f on the velocity variable, problem (P̃ ) agrees with its relaxation

(R). Taking into account the form of the cost functional (3.30) and Theorem 3.1(i) on the
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strong discrete approximation of x̄(·) in C[0, T ], we arrive at the claimed convergence result in

assertion (i) of this theorem by just simplifying the above proof of assertion (ii) and replacing

the cost functional Jk with J̌k.

3.4 Optimality Conditions for Discrete Approximations

In this section we derive necessary optimality conditions for each problem (P̃k), k ∈ IN , in the

sequence of discrete approximations formulated in Section 3.3. In the same way we can proceed

with deriving necessary optimality conditions in the simplified problems (P̌k); we do not present

them here due to the full similarity and size limitation.

Note that problems of this type intrinsically belong to nonsmooth optimization even when all

the functions f and ϕi for i = 0, . . . ,m+ r are smooth and Ω = Rn. The nonsmoothness comes

from the dynamic constraints in (3.9) given by the discretization of the differential inclusion

(3.2); the number of these constraints is increasing along with decreasing the step of discretiza-

tion. To derive necessary optimality conditions for problems (P̃k), we employ advanced tools of

variational analysis and generalized differentiation discussed in Chapter 2.

Now we employ Lemma 2.4 and calculus rules for generalized normals and subgradients

to derive necessary optimality conditions for the structural dynamic problems of discrete ap-

proximation (P̃k) in the extended Euler-Lagrange form. Note that for this purpose we need

less assumptions that those imposed in (H1)–(H5). Observe also that the form of the Euler-

Lagrange inclusion below reflects the essence of the implicit Euler scheme being significantly

different from the adjoint system corresponding to the explicit Euler counterpart from [27, 30].

The solvability of the new implicit adjoint system is ensures by Lemma 2.4 due the given proof

of the this theorem.
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Theorem 3.3 (extended Euler-Lagrange conditions for discrete approximations).

Fix any k ∈ IN and let x̄k = (x̄k0, . . . , x̄
k
k) with x̄k0 = x0 in (3.9) be an optimal solution to

problem (P̃k) constructed in Section 3.3. Assume that the sets Ω and gphFj with Fj := F (·, tj)

are closed and the functions ϕi for i = 0, . . . ,m + r and fj := f(·, ·, tj) for j = 0, . . . , k are

Lipschitz continuous around the corresponding points.

Then there exist real numbers λki for i = 0, . . . ,m + r and a vector pk := (pk0, . . . , p
k
k) ∈

R(k+1)n, which are not equal to zero simultaneously and satisfy the following relationships:

• The sign conditions

λki ≥ 0 for i = 0, . . . ,m; (3.36)

• the complementary slackness conditions

λki [ϕi(x̄
k
k)− Lηk] = 0 for i = 1, . . . ,m; (3.37)

• the extended Euler-Lagrange inclusion held for j = 1, . . . , k:

(pkj − pkj−1

hk
, pkj−1 −

λk0θ
k
j

hk

)
∈ λk0∂fj

(
x̄kj ,

x̄kj − x̄kj−1

hk

)
+N

((
x̄kj ,

x̄kj − x̄kj−1

hk

)
; gphFj

)
;(3.38)

• the transversality inclusion

− pkk ∈
m∑
i=0

λki ∂ϕi(x̄
k
k) +

m+r∑
i=m+1

λki ∂
0ϕi(x̄

k
k) +N(x̄kk; Ωk), (3.39)
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where ∂0ϕi stands for the symmetric subdifferential (2.15) of ϕi, and where

θkj := −2

∫ tj

tj−1

(
˙̄x(t)−

x̄kj − x̄kj−1

hk

)
dt. (3.40)

Proof. Skipping for notational simplicity the upper index “k" if no confusions arise, consider

the new “long" variable

z := (x0, . . . , xk, y1, . . . , yk) ∈ R(2k+1)n with the fixed initial vector x0

and for each k ∈ IN reformulate the discrete approximation problem (P̃k) as a mathematical

program of the type (MP ) with the following data:

min φ0(z) := ϕ0(xk) + hk

k∑
j=1

f(xj , yj , tj) +

k∑
j=1

∫ tj

tj−1
|yj − ˙̄x(t)|2dt (3.41)

subject to the functional and geometric constraints

φj(z) := |xj − x̄(tj)|2 −
ε2

4
≤ 0 for j = 1, . . . , k, (3.42)

φk+1(z) :=
k∑
j=1

∫ tj

tj−1
|yj − ˙̄x(t)|2dt− ε

2
≤ 0, (3.43)

φk+1+j(z) = ϕj(xk)− Lηk ≤ 0 for j = 1, . . . ,m+ r, (3.44)

φk+1+m+r+j(z) := −ϕm+j(xk)− Lηk ≤ 0 for j = 1, . . . , r, (3.45)
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gj(z) := xj − xj−1 − hkyj = 0 for j = 1, . . . , k, g0(z) = x(0)− x0 ≡ 0, (3.46)

z ∈ ∆0 = {(x0, . . . , xk, y1, . . . , yk) ∈ R(2k+1)n| xk ∈ Ω}, (3.47)

z ∈ ∆j = {(x0, . . . , xk, y1, . . . , yk) ∈ R(2k+1)n| yj ∈ Fj(xj)}, j = 1, . . . , k. (3.48)

Let x̄k = (x0, x̄
k
1, . . . , x̄

k
k) be a given local optimal solution to problem (P̃k), and thus the

corresponding extended variable z̄ := (x0, . . . , x̄k, (x̄1 − x̄0)/hk, . . . , (x̄k − x̄k−1)/hk), where the

upper index “k" is omitted, gives a local minimum to the mathematical program (MP ) with

the data defined in (3.41)–(3.48). Applying now to z̄ the generalized Lagrange multiplier rule

from Lemma 2.4, we find normal collections

z∗j = (x∗0j , . . . , x
∗
kj , y

∗
1j , . . . , y

∗
kj) ∈ N(z̄; ∆j) for j = 0, . . . , k (3.49)

and well as nonnegative multipliers (µ0, . . . , µk+1+m+2r) and vectors ψj ∈ Rn for j = 0, . . . , k

such that we have the conditions

µjφj(z̄) = 0 for j = 1, . . . , k + 1 +m+ 2r, (3.50)

− z∗0 − . . .− z∗k ∈ ∂
( k+1+m+2r∑

j=0

µjφj

)
(z̄) +

k∑
j=0

(∇gj(z̄))Tψj . (3.51)

It follows from (3.49) and the structure of ∆0 in (3.47) that

x∗k0 ∈ N(x̄k; Ωk), y
∗
00 = y∗i0 = x∗i0 = 0 for i = 1, . . . , k − 1, and x∗00 is free;
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the latter is due to the fact that x0 is fixed. Furthermore, inclusion (3.49) for j = 1, . . . , k gives

us by the structure of ∆j that

(x∗jj , y
∗
jj) ∈ N

((
x̄j ,

x̄j − x̄j−1

hk

)
; gphFj

)
and x∗ij = y∗ij = 0 if i 6= j, j = 1, . . . , k.

Employing the above conditions together with the subdifferential sum rule from [29, Theo-

rem 2.33] with taking into the nonnegativity of µj , we get from (3.51) that

∂
( k+1+m+2r∑

j=0

µjφj

)
(z̄) +

k∑
j=0

(∇gj(z̄))Tψj

⊂
k+1+m+2r∑

j=0

µj∂φj(z̄) +
k∑
j=0

(∇gj(z̄))Tψj

= µ0∇
[
ϕ(xk) + hk

k∑
j=1

f(xj , yj , tj) +
k∑
j=1

∫ tj

tj−1
|yj − ˙̄x(t)|2dt

]
+

k∑
j=1

µj∇(|xj − x̄(tj)|2) + µk+1∇
( k∑
j=1

∫ tj

tj−1
|yj − ˙̄x(t)|2dt

)
+

m+r∑
j=1

µk+1+j∇ϕi(x̄k)−
r∑
j=1

µk+1+m+r+j∇ϕj(x̄k)

+

k∑
j=1

∇(xj − xj−1 − hkyj)Tψj +∇(x(0)− x0)Tψ0,

where the derivatives (gradients, Jacobians) of all the composite/sum functions involves with

respect of all their variables of are taken at the optimal point z̄. It follows from Theorem 3.1

that for k ∈ IN sufficiently large we have φj(z̄k) < 0 for z̄ = z̄k and j = 1, . . . , k + 1 due to the

structures of the functions φ in (3.42) and (3.43) and the complementary slackness conditions

in (3.50). This implies µj = 0 for j = 1, . . . , k + 1. Considering now the Lagrange multipliers

λk0 := µ0 and λki := µk+1+i for i = 1, . . . ,m
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and using the expressions for θkj in (3.40), we find from the above subgradients

(vj , wj) ∈ ∂fj(x̄j , ȳj), j = 1, . . . , k, uki ∈ ∂ϕi(x̄k), i = 0, . . . ,m+ r,

and u′ki ∈ ∂(−ϕi)(x̄k), i = m+ 1, . . . ,m+ r,

for which we have the conditions

−x∗jj = λk0hkvj + ψj − ψj+1, j = 1, . . . , k − 1,

−x∗k0 − x∗kk = λk0hkvk + ψk +

m∑
i=0

λk0u
k
i +

m+r∑
i=m+1

µk+1+iu
k
i +

m+r∑
i=m+1

µk+1+r+iu
′k
i ,

−y∗jj = λk0hkwj + λk0θ
k
j − hkψj , j = 1, . . . , k.

Next we introduce for each k ∈ IN the adjoint discrete trajectories by

pkj−1 := ψkj for j = 1, . . . , k and

pkk := −x∗k0 −
m∑
i=0

λki u
k
i −

m+r∑
i=m+1

µk+1+iu
k
i −

m+r∑
i=m+1

µk+1+r+iu
′k
i .

Then we get the relationships

pkj − pkj−1

hk
=
ψkj+1 − ψkj

hk
= λk0vj +

x∗jj
hk
,

pkj−1 −
λk0θ

k
j

hk
= ψkj −

λk0θ
k
j

hk
= λk0wj +

y∗jj
hk
,
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which ensure the validity of the extended Euler-Lagrange inclusion of the theorem for each

j = 1, . . . , k. Furthermore, it follows from (3.44), (3.45) and the complementary slackness

conditions in (3.50) that for, j = m+ 1, . . . ,m+ r, we have

µk+1+j(ϕj(x
k
k)− Lηk) = 0 and µk+1+r+j(−ϕj(xkk)− Lηk) = 0,

which implies that either µk+1+j = 0 or µk+1+r+j = 0 must be equal to zero for all j =

m+ 1, . . . ,m+ r. Denoting finally

λki :=


µk+1+i if µk+1+r+i = 0,

−µk+1+r+i if µk+1+i = 0

(3.52)

for each i = m+ 1, . . . ,m+ r, we get

−pkk = x∗k0 +
m∑
i=0

λki u
k
i +

m+r∑
i=m+1

µk+1+iu
k
i +

m+r∑
i=m+1

µk+1+r+iu
′k
i

∈ N(x̄kk; Ωk) +

m∑
i=0

λki ∂ϕi(x̄
k
k)

+
m+r∑
i=m+1

µk+1+i∂ϕi(x̄
k
k) +

m+r∑
i=m+1

µk+1+r+i∂(−ϕi)(x̄kk)

⊂
m∑
i=0

λki ∂ϕi(x̄
k
k) +

m+r∑
i=m+1

λki ∂
0ϕi(x̄

k
k) +N(x̄kk; Ωk).

This justifies the transversality inclusion completes the proof of the theorem.

The last result of this section specifies the nontriviality condition of Theorem 3.3 (meaning

that all the dual elements therein, i.e., λki for i = 0, . . . ,m + r and pkj for j = 0, . . . , k, are

not equal to zero simultaneously) for the important class of multifunctions Fj = F (·, tj) in

the discrete inclusions (3.9) of the implicit Euler scheme satisfying the so-called Lipschitz-like
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(known also as Aubin’s pseudo-Lipschitz) property around the optimal solution x̄k for (P̃k).

Recall that a set-valued mapping F : Rn →→ Rm is Lipschitz-like around (x̄, ȳ) ∈ gphF if there

exist neighborhoods U of x̄ and V of ȳ as well as a constant κ ≥ 0 such that we have the

inclusion

F (u) ∩ V ⊂ F (x) + κ|x− u|IB for all x, u ∈ U.

A crucial advantage of the nonconvex normal cone (2.11) is the possibility to obtain in its terms a

complete characterization of the Lipschitz-like property of arbitrary closed-graph multifunctions.

To formulate this result, we recall coderivative notion (2.16) in Chapter 2. Now we employ

Lemma 2.3 to derive the aforementioned consequence of Theorem 3.3.

Corollary 3.4 (enhanced nontriviality condition). In addition to the assumptions of

Theorem (3.3), suppose that for each j = 1, . . . , k, the multifunction Fj is Lipschitz-like around

the optimal point (x̄kj , (x̄
k
j − x̄kj−1)/hk). Then all the necessary optimality conditions of this

theorem hold at x̄k with the enhanced nontriviality

m+r∑
i=0

|λki |+ |pk0| = 1 for all k ∈ IN. (3.53)

Proof. If λk0 = 0, then it follows from the Euler-Lagrange inclusion of the theorem that

(pkj − pkj−1

hk
, pkj−1

)
∈ N

((
x̄kj ,

x̄kj − x̄kj−1

hk

)
; gphFj

)

for all j = 1, . . . , k, which tells us by the coderivative definition (2.16) that

pkj − pkj−1

hk
∈ D∗Fj

(
x̄kj ,

x̄kj − x̄kj−1

hk

)
(−pkj−1), j = 1, . . . , k.
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Employing finally the coderivative criterion (2.17) with taking into account the transversality

condition of the theorem as well as the normalization of (λ0, . . . , λm+r, p
k
0) without changing

other conditions, we arrive at (3.53) and thus completes the proof.

3.5 Necessary Optimality Conditions for the Bolza Problem

In this section we come back to the generalized Bolza problem (P̃ ) and prove necessary opti-

mality conditions for an i.r.l.m. in the extended Euler-Lagrange form.

For the case of the explicit Euler discrete approximation, the necessary condition in a refined

Euler-Lagrange form is obtained when the velocity function F is Lipschitzian around the local

minimizer under consideration; cf. [27, Theorem 6.1] and [30, Theorem 6.22]. Similar, using

the implicit Euler scheme and Theorem 3.3 the necessary condition for implicit Euler discrete

approximation, we can get the Euler-Lagrange form for (P̃ ) by passing to the limit with the

vanishing step of dicretization with employing the coderivative calculations.

From the result of Section 3.4, here instead of the ROSL hypotheses in (H2) and the conti-

nuity hypotheses in (H4) and (H5), we need the Lipschitz continuity.

(H2’) Given U from (H1), for all x1, x2 ∈ U , t ∈ [0, T ], we have

F (x1, t) ⊂ F (x2, t) + lF |x1 − x2|IB. (3.54)

(H4’) f(x, v, ·) is continuous for a.e. t ∈ [0, T ] and bounded uniformly in (x, v) ∈ U × (mFB).

There exists ν > 0 and lf ≥ 0 such that the function f(·, ·, t) is locally Lipschitzian with

modulus lf around any point of the set Aν(t) in (H4).

(H5’) The function ϕi(x(T )) is Lipschitz continuous on U for all i = 0, . . . ,m+r and Ω is locally

closed around x(T ).
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One of the fundamental properties of the generalized differential constructions under con-

sideration is their robustness with respect to variables of differentiation. Actually, the subdif-

ferential (2.14) turns out to be the robust regularization of the subdifferential mapping. It is

well known that if f is locally Lipschitzian around x̄ with modulus lf , then ∂f(x̄) 6= ∅, |v| ≤ lf

for all v ∈ ∂f(x̄).

In the limiting procedure below, we also need the robustness of ∂f(·, ·, t) andN((·, ·); gphF (·, t))

(H6) For a.e. t ∈ [0, T ] one has

lim sup
(x′,v′)→(x̄(t), ˙̄x(t)),t′→t,t′<t

∂f(x′, v′, t′) = ∂f(x̄(t), ˙̄x(t), t).

(H7) For a.e. t ∈ [0, T ] one has

lim sup
(x′,v′)→(x̄(t), ˙̄x(t)),t′→t,t′<t

N((x′, v′); gphF (·, t′)) = N((x̄(t), ˙̄x(t)); gphF (·, t)).

Note that the ROSL and Lipschitz-like properties of F used in Corollary 3.4 are generally

independent (even for bounded mappings), and they both are implied by the classical Lipschitz

condition.

Theorem 3.5 Let x̄(·) be an i.r.l.m. for problem (P̃ ) under assumptions (H1), (H2’), (H3’),

(H4’), (H5’), (H6), and (H7). Then there exist real numbers λi, i = 0, . . . ,m + r and an

absolutely continuous function p : [0, T ] → Rn, not both zero, such that for a.e. t ∈ [0, T ], the

following necessary conditions hold:
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• The sign conditions

λi ≥ 0 for i = 0, . . . ,m;

• the complementary slackness conditions

λiϕi(x̄(T )) = 0 for i = 1, . . . ,m;

• the extended Euler-Lagrange inclusion

ṗ(t) ∈ clco
{
u|(u, p(t)) ∈ λ0∂f(x̄(t), ˙̄x(t), t) +N((x̄(t), ˙̄x(t)); gphF (·, t))

}
;

• the transversality inclusion

−p(T ) ∈
m∑
i=0

λi∂ϕi(x̄(T )) +

m+r∑
i=m+1

λi∂
0ϕi(x̄(T )) +N(x̄(T ); Ω).

Proof. Given the i.r.l.m. x̄(·), since all the assumptions of Theorem 3.2 are satisfied,

then the optimal solution x̄k(t) = xk(tj−1) + (t− tj−1)(xk(tj)− xk(tj−1))/hk, for t ∈ (tj−1, tj ],

j = 1, . . . , k to the discrete approximations (Pk) approximates x̄(t) in the norm of W 1,2[0, T ].

Applying Theorem 3.3, we can find sequences of numbers λki ≥ 0 and discrete adjoint trajectories

pk = (pk1, . . . , p
k
k+1) satisfied conditions (3.36)-(3.39).

By (3.53) from Corollary 3.4, we have for i = 0, · · · ,m+r, |λki | and |pk|0 are bounded. Thus

without loss of generality, we can suppose that λki → λi as k →∞ for all i = 0, . . . ,m+r. Thus

the sign conditions is given from λki ≥ 0 for i = 0, · · · ,m. Moreover, employing (3.20) ηk → 0

as k →∞, we get the complementarity slackness conditions.
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Consider the piecewise linear extensions of pk(t) on [0, T ],

pk(t) := pkj−1 + (t− tj−1)
pkj − pkj−1

hk
t ∈ (tj−1, tj ],

with derivatives ṗk(t) = (pkj − pkj−1)/hk, t ∈ (tj−1, tj ]. Having θkj in Theorem 3.3, we consider a

sequence of the functions

θk(t) = θkj /hk for t ∈ (tj−1, tj ], j = 1, . . . , k.

It from the strong convergence of Therorem 3.2

∫ T

0
|θk(t)|dt =

k∑
j=1

|θkj | ≤ 2

k∑
j=1

∫ tj

tj−1

∣∣∣ ˙̄x(t)−
x̄kj − x̄kj−1

hk

∣∣∣ dt
= 2

∫ T

0
| ˙̄x(t)− ˙̄xk(t)| dt→ 0 as k →∞.

(3.55)

Without loss of generality, suppose that

˙̄xk(t)→ ˙̄x(t) and θk(t)→ 0 a.e. t ∈ [0, T ] as k →∞. (3.56)

Let us estimate the adjoint functions pk(·) for large enough k. According to (3.38) and

definition of the coderivative D∗Fj , there exist vectors (vkj , w
k
j ) ∈ ∂fj(x̄kj , (x̄kj − x̄kj−1)/hk) such

that for all j = 1, . . . , k we have

pkj − pkj−1

hk
− λk0vkj ∈ D∗Fj

(
x̄kj ,

x̄kj − x̄kj−1

hk

)
(λk0w

k
j + λk0θ

k
j /hk − pkj−1). (3.57)
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Since F is locally Lipschitzian, then by Lemma 2.3, for all j = 1, . . . , k, we have

∣∣∣pkj − pkj−1

hk
− λk0vkj

∣∣∣ ≤ lF |λk0wkj + λk0θ
k
j /hk − pkj−1|. (3.58)

Employing the locally Lipschitzian of f(·, ·, t), by (H4’) and (vkj , w
k
j ) ∈ ∂fj(x̄kj , (x̄kj−x̄kj−1)/hk),

we have for all j = 1, . . . , k that |(vkj , wkj )| ≤ lf , i.e.,

|vkj | ≤ lf and |wkj | ≤ lf . (3.59)

Employing (3.58)

|pkj | − |pkj−1| − hk|λk0vkj | ≤ hklF
[
|λk0wkj |+ |λk0θkj /hk|+ |pkj−1|

]
,

using (3.53), (3.55), (3.59), for all j = 1, . . . , k, we get

|pkj | ≤ (1 + hklF )|pkj |+ hklf (1 + lF ) + lF |θkj |

≤ (1 + hklF )j |pk0|+ hklf (1 + lF )
[
1 + (1 + hklF ) + · · ·+ (1 + hklF )j−1

]
+lF

[
|θkj |+ · · ·+ (1 + hklF )j−1|θk1 |

]
≤ e2lFT

[
1 + lfT (1 + lF ) + lF 2

∫ T

0
|θk(t)| dt

]
(3.60)

This means that the adjoint functions pk(t) are uniformly bounded in [0, T ]. Employing

(3.58), (3.59) to estimate the derivatives ṗk(t), one has

|ṗk(t)| ≤
∣∣∣pkj − pkj−1

hk

∣∣∣ ≤ lf + lF
(
lf + |θk(t)|+ |pkj−1|

)
, t ∈ (tj−1, tj ]. (3.61)

By (3.56), (3.60), for all k large enough, ṗk(t) are also uniformly bounded. Therefore,
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following Mordukhovich [27, 30], applied the Dunford theorem to the {ṗk(t)} and by the weak

continuity of integral, we can find an absolutely continuous function p(·) such that pk(·)→ p(·)

uniformly in [0, T ] and ṗk(·) → ṗ(·) weakly in L1[0, T ] for k → ∞. Taking the limit in (3.53),

one has the normalization condition
∑m+r

i=0 |λi|+ |p(0)| = 1, which implies that (λ0, . . . , λm+r)

and p(·) are not equal to zero simultaneously. It follows from (3.60) that if p(t0) = 0 at some

point t0 ∈ [0, T ], then p(t) ≡ 0 in [0, T ]. Next, we conclude for t ∈ (tj−1, tj ], j = 1, . . . , k, the

approximate Euler-Lagrange inclusion (3.38) can be rewritten as

ṗk(t) ∈
{
u
∣∣∣(u, pk(tj−1)− λk0θk(t)

)
∈ λk0∂f(x̄kj , ˙̄xk(t), tj) +N

(
(x̄kj , ˙̄xk(t)); gphF (·, tj)

)}
. (3.62)

According to the Mazur theorem, there is a sequence of convex combinations of ṗk(t) that

converges to ṗ(t) for a.e. t ∈ [0, T ]. Now passing to the limit in (3.62) as k → ∞ and using

(3.56) as well as hypotheses (H6) and (H7), we obtain the extended Euler-Lagrange inclusion.

Consider the approximate transversality inclusion, employing the local Lipschitz continuity

of ϕi and the definition of subdifferential we have as k →∞

m∑
i=0

λki ∂ϕi(x̄
k
k) +

m+r∑
i=m+1

λki ∂
0ϕi(x̄

k
k)→

m∑
i=0

λi∂ϕi(x̄(T )) +
m+r∑
i=m+1

λi∂
0ϕi(x̄(T )).

Since Ωk = Ω+ηkIB, passing to the limit k →∞, obviously we have the transversality inclusion

and complete the proof of the theorem. 4
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Chapter 4

Runge-Kutta Discrete Approximation of
Nonconvex Differential Inclusions

4.1 Introduction

Consider the following optimization problem (P ) of the generalized Bolza type governed by

constrained differential inclusions:

minimize J [x] := ϕ
(
x(T )

)
+

∫ T

0
f
(
x(t), ẋ(t), t

)
dt (4.1)

over absolutely continuous trajectories x : [0, T ]→ Rn satisfying the differential inclusion

ẋ(t) ∈ F
(
x(t), t

)
a.e. t ∈ [0, T ] with x(0) = x0 ∈ Rn (4.2)

subject to the geometric endpoint constraints

x(T ) ∈ Ω ⊂ Rn, (4.3)

Here x0 is a fixed n-vector, F : Rn × [0, T ] →→ Rn is a set-valued mapping/multifunction, Ω is

an nonempty set, f and ϕ are real-valued functions.

In this chapter we employ the Runge-Kutta method to solve the above Bolze problem under

consideration allows us to build a well-posed sequence of optimization problems for discrete

inclusions with a strong convergence of optimal solutions. Runge-Kutta methods first was used
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to solve optimal control problem with ordinary differential equations, not only second-order

approximation was obtained but also the high-order approximations, see, e.g., [13, 15, 18, 19].

As the generalization of ordinary differential equations, differential inclusions problem also can

be solved by Runge-Kutta method, see [1, 21, 23, 35, 36, 37] for more details. Since the special

construction of set-valued mapping, in [35] Veliov got even for the different formalization of the

second-order Runge-Kutta scheme, we may not suppose the same convergence rate. Instead of

evaluating the convergence rate, we consider the possiblity that using the Runge-Kutta method

to solve the optimization problem via an approximating Runge-Kutta sequence to the optimal

solution. Consider the following formal generalization of second-order Runge-Kutta scheme

x(t+ h) ∈ x(t) + 0.5h
{
y + F

(
x(t) + hy, t+ h

)
; y ∈ F (x(t), t)

}
, h > 0.

The associate discrete inclusion is

xj+1 ∈ xj + 0.5h{y + F (xj + hy, tj + h); y ∈ F (xj , tj)} with hk ↓ 0 as k →∞.

Our new results is outlined as follows. In section 4.2 we construct well-posted discrete Runge-

Kutta approximations of differential inclusion. Under the assumption F is locally Lipschitzian

we justify the strong approximation in the norm of W 1,2[0, T ] of a given feasible trajectory of

the differential inclusion by discrete Rugn-Kutta trajectories.

Section 4.3 deals with discrete approximation of of Problem (P ). We construct a sequence

of optimization problems (Pk) to the original Bolza problem (P ). Then we present the result

on the strong stability of discrete approximations that justifies the W 1,2 norm convergence of

optimal solutions for (Pk) to the given optimal solution x̄(·) for (P ).
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Section 4.4 devoted to deriving necessary optimality conditions for the discrete approxi-

mation problems arising from the discrete approximation procedure whose well-posedness and

stability are justified in Section 4.3. By Runge- Kutta discretization, the discrete problems can

be regarded as a finite-dimensional mathematical program with a special structure. For differ-

ent generalization of the parameter in the solution sequences for (Pk), we can get two version

of necessary conditions.

4.2 Strong Approximation via Runge-Kutta Scheme

In this section, instead the one-sided Lipschitzian hypotheses in (H2), the locally Lipschitz con-

tinuity (H2’) is needed . We now construct a finite-difference approximation of the differential

inclusion in (4.2) by using by the Runge-Kutta method , i.e. Method of Euler-Cauchy to replace

the time derivative by

x(t+ h) ∈ x(t) + 0.5h
{
y + F

(
x(t) + hy, t+ h

)
; y ∈ F (x(t), t)

}
; as h ↓ 0.

To formalize this process, for any k ∈ IN define the discrete grid/mesh on [0, T ] by

Tk :=
(
tj
∣∣ j = 0, 1, . . . , k

)
with t0 := 0, tk := T, and stepsize hk := T/k = tj+1 − tj .

Then the corresponding discrete inclusions associated with (4.2) via the Runge-Kutta scheme

are constructed as follows:

xkj+1 ∈ xkj + 0.5hk{y + F (xkj + hky, tj + h); y ∈ F (xkj , tj)} for j = 0, . . . , k − 1, (4.4)

where the starting vector xk0 in (4.4) is taken from (4.2).
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This method can be derived using two step:


x̄kj+1 ∈ xkj + hkF (xkj , tj),

xkj+1 ∈ (x̄kj+1 + xj)/2 + 0.5hkF (x̄kj+1, tj+1),

The next theorem justifies the aforementioned strong W 1,2[0, T ]-approximation of feasible

solutions to (4.2) by those for the discrete inclusions (4.5).

Theorem 4.1 Let x̄(·) be a feasible trajectory for (4.2) under the assumptions in (H1), (H2’),

(H3). Then there is a sequence {zkj |j = 0, . . . , k} of feasible solutions to the discrete inclusions

(4.5) such that the piecewise constantly extended to [0, T ] discrete velocity functions

vk(t) :=
zkj+1 − zkj

hk
, t ∈ [tj , tj+1), j = 0, . . . , k − 1, (4.5)

converge to ˙̄x(·) as k → ∞ in the norm topology of L2[0, T ], which is equivalent to the strong

W 1,2[0, T ]-convergence on [0, T ] of the piecewise linear functions constructed by

zk(t) := x0 +

∫ t

0
vk(s) ds for all t ∈ [0, T ], k = 1, 2, . . . . (4.6)

Proof. Without loss of generality, let wk(·) be an arbitrary sequence of functions on [0, T ]

such that wk(t) are constant on [tj , tj+1) and wk(t) converge to ˙̄x(t) as k → ∞ in the norm

topology of L1[0, T ], taking into account the density of step functions in L1[0, T ]. Here x̄(t)

is an arbitrary feasible trajectory for (4.2) from the formulation of the theorem and denote

x̄j := x̄(tj). By the boundness assumption in (H1), one gets

|wk(t)| ≤ mF + 1 for all t ∈ [0, T ] and k ∈ IN.
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Let us define further the sequences

wkj := wk(tj) for j = 0, . . . , k − 1 and ξk :=

∫ T

0
| ˙̄x(t)− wk(t)| dt→ 0 as k →∞ (4.7)

and for each k ∈ IN form recurrently the collection of vectors {yk0 , . . . , ykk} by

ykj+1 := ykj + hkw
k
j for j = 0, . . . , k − 1 with yk0 = x0. (4.8)

Note that the continuous-time vector functions

yk(t) := x0 +

∫ t

0
wk(s) ds, 0 ≤ t ≤ T,

are piecewise linear extensions of the discrete ones (4.8) on [0, T ] satisfying the estimate

|yk(t)− x̄(t)| ≤
∫ t

0
|wk(s)− ˙̄x(s)| ds ≤ ξk for all t ∈ [0, T ], k ∈ IN, (4.9)

where ξk is taken from (4.7). Therefor, yk(t) ∈ U for all t ∈ [0, T ] if k is big enough; U as in

(H1). It well known that the Lipschitz condition (H2’) is equivalent to

dist(w,F (x1, t)) ≤ dist(w,F (x2, t)) + lF |x1 − x2|, ∀w ∈ Rn x1, x2 ∈ U, t ∈ [0, T ].

For all w, x ∈ Rn and t1, t2 ∈ [0, T ], one obviously has

dist(w,F (x, t1)) ≤ dist(w,F (x, t2)) + dist(F (x, t1), F (x, t2)).

Since for t ∈ [tj , tj+1), one has wk(t) = wk(tj) = wj , for j = 0, . . . , k − 1, it follows from
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locally boundness and Lipschitzian of F and the construction of yk(t), for all t ∈ [tj , tj+1) we

get

dist(wkj , F (ykj , t))dt = dist(wk(t), F (ykj , t))dt

≤ dist(wk(t), F (yk(t), t))dt+ lF |ykj − yk(t)|

≤ dist(wk(t), F (xk(t), t))dt+ lF |yk(t)− xk(t)|+ lF |ykj − yk(t)|

≤ |wkj − ˙̄x(t)|+ lF ξk + lF (mF + 1)(t− tj).

This readily leads us to the following inequalities:

k−1∑
j=1

∫ tj+1

tj

dist(wkj , F (ykj , t))dt

≤
k−1∑
j=1

∫ tj+1

tj

[
|wkj − ˙̄x(t)|+ lF ξk + lF (mF + 1)(t− tj)

]
dt

≤
∫ T

0
|wk(t)− ˙̄x(t)| dt+ T lF ξk + 0.5lF (mF + 1)hkT

≤ ξk + T lF ξk + 0.5lF (mF + 1)hkT.

(4.10)

Now we construct a sequence of discrete trajectories zk = (zk0 , . . . , z
k
k) for (4.5) by the

following algorithmic procedure:

vkj1 ∈ F (zkj , tj) with |vkj1 − wkj | = dist(wkj , F (zkj , tj)),

vkj2 ∈ F (zkj + hkv
k
j1, tj+1) with |vkj2 − wkj | = dist(wkj , F (zkj + hkv

k
j1, tj+1)),

zkj+1 = zkj + 0.5hk(v
k
j1 + vkj2),
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One can directly see that zkj+1 satisfies the Runge-Kutta scheme (4.4). Then

|zkj+1 − ykj+1| ≤ |zkj − ykj |+ 0.5hkdist(wkj , F (zkj , tj)) + 0.5hkdist(wkj , F (zkj + hkv
k
j1, tj+1)).

Using the Lipschitz condition and the boundness assumption, we get

dist(wkj , F (zkj , tj)) ≤ lF |zkj − ykj |+ dist(wkj , F (ykj , tj)),

and

dist(wkj , F (zkj + hkv
k
j1, tj+1)))

≤ dist(wkj , F (ykj , tj+1)) + lF |zkj + hkv
k
j1 − ykj |

≤ dist(wkj , F (yk, tj+1)) + lF |zkj − ykj |+ lFhk|vkj1 − wkj + wkj |

≤ dist(wkj , F (yk, tj+1)) + lF |zkj − ykj |+ lFhkdist(wkj , F (zk, tj)) + lFhk(mF + 1)

≤ lFhkdist(wkj , F (yk, tj)) + dist(wkj , F (yk, tj+1)) + lF (1 + lFhk)|zkj − ykj |+ lFhk(mF + 1)

Thus we arrive at the estimate valid for all j = 0, . . . , k − 1 and k ∈ IN

|zkj+1 − ykj+1| ≤ (1 + lFhk + 0.5l2Fh
2
k)|zkj − ykj |+ 0.5hk(1 + lFhk)dist(wkj , F (ykj , tj))

+0.5hkdist(wkj , F (ykj , tj+1)) + 0.5h2
klF (mF + 1)

≤ (1 + lFhk)
2|zkj − ykj |+ 0.5hk(1 + lFhk)dist(wkj , F (ykj , tj))

+0.5hkdist(wkj , F (ykj , tj+1)) + 0.5h2
klF (mF + 1).

(4.11)
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Proceeding further by induction implies that

|zkj+1 − ykj+1|

≤ 0.5hk

j∑
m=0

(1 + lFhk)
2(j−m)

[
(1 + lFhk)dist(wkm, F (ykm, tm))

+dist(wkm, F (ykm, tm+1))
]

+ 0.5hklFmFT

≤ 0.5e2lFT
∑j

m=0 hk

[
(1 + lFhk)dist(wkm, F (ykm, tm)) + dist(wkm, F (ykm, tm+1))

]
+ 0.5hklFmFT.

(4.12)

We recall next the average modulus of continuity of F defined by

τ(F ;h) := sup x∈U
∫ T

0
sup

{
dist(F (x, t′), F (x, t′′))

∣∣∣ t′, t′′ ∈ [t− h

2
, t+

h

2

]}
dt

and consider the quantities ζk with the estimates

ζk :=
k∑

m=1

hk

[
(1 + lFhk)dist(wkm, F (ykm, tm)) + dist(wkm, F (ykm, tm+1))

]
=

k∑
m=1

∫ tm

tm−1

[
(1 + lFhk)dist(wkm, F (ykm, tm)) + dist(wkm, F (ykm, tm+1))

]
≤ (2 + lFhk)

k∑
m=1

∫ tm

tm−1

dist
(
wkm, F (ykm, t)

)
+ (2 + lFhk)τ(F ;hk), k ∈ IN.

(4.13)

It follows from (4.10) that

ζk ≤ 2[ξk + T lξk + 0.5lF (mF + 1)hkT ] + (2 + lFhk)τ(F ;hk).

It is well known (see, e.g., [30, Proposition 6.3]) that the a.e. continuity of F (x, ·) on [0, T ]

uniformly in x ∈ U assumed in (H3) is equivalent to the convergence τ(F ;hk) → 0. By

employing ξk → 0 the definition of ζk, it gives us the convergence ζk → 0 as k →∞.

Using this and the last inequality in (4.12) allows us to conclude that for all j = 0, . . . , k− 1
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and all k ∈ IN

|zkj+1 − ykj+1| ≤ 0.5ζke
2lFT + 0.5hklFmFT. (4.14)

Furthermore, we easily get the estimates

|zkj+1 − x̄j+1| ≤ 0.5ζke
2lFT + 0.5hklFmFT + |ykj+1 − x̄j+1|

≤ 0.5ζke
2lFT + 0.5hklFmFT + ξk =: ηk,

(4.15)

where ηk → 0 due to (4.7) and ζk → 0 as k →∞.

Now let us estimate the quality
∫ T

0 |ż
k(t)−ẋk(t)| dt, considering next the the piecewise linear

functions zk(·) built in (4.6) by using the discrete velocity vk(·) from (4.5), we get from (4.5)

and (4.4) that

żk(t) = 0.5(vkj1 + vkj2) =
zkj+1 − zkj

hk
on [tj , tj + 1), j = 0, . . . , k − 1.

we derive from the construction of zkj+1 and (4.14) that

∫ T

0
|żk(t)− ẏk(t)| dt = 0.5

k−1∑
j=0

hk

[
|vkj1 − wkj |+ |vk2

j − wkj |
]

≤ 0.5
k−1∑
j=0

hk

[
dist(wkj , F (zkj , tj)) + dist(wkj , F (zkj + hkv

k
j1, tj+1))

]

≤ 0.5
k−1∑
j=0

hk

[
|zkj − ykj |+ 2dist(wkj , F (ykj , tj)) + |zkj + hkv

k
j1 − ykj |+ τ(F ;h)

]
≤ 2T [0.5ζke

2lFT + 0.5hklFmFT ] + ThkmF + Tζk.

Since ζk → 0 as k →∞ for this sequence defined in (4.13), it follows from (4.14) that

∫ T

0
|żk(t)− ẏk(t)| dt→ 0 as k →∞.
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Employing further (4.9) gives us the estimate and the convergence

αk :=

∫ T

0
|żk(t)− ˙̄x(t)| dt ≤

∫ T

0
|żk(t)− ẏk(t)| dt+

∫ T

0
|ẏk(t)− ˙̄x(t)| dt→ 0, (4.16)

which show that the sequence of żk(·) converge to ˙̄x(·) in the norm topology of L1[0, T ]. To

complete the proof, we need to verify L2[0, T ] norm convergence. Similar with Theorem 3.1, by

the constructions above and assumption (H1), it is implied by the following relationships:

k−1∑
j=0

∫ tj+1

tj

∣∣∣zk(tj+1)− zk(tj)
hk

− ˙̄x(t)
∣∣∣2dt

=

k−1∑
j=0

max
(
|vkj |+ | ˙̄x(t)|

)∫ tj+1

tj

|vkj − ˙̄x(t)| dt

≤ 2mF

k∑
j=1

∫ tj

tj−1

|vkj − ˙̄x(t)| dt = 2mFαk,

where αk is taken from (4.16). This justifies the W 1,2[0, T ]-norm convergence of the extended

discrete trajectories {zk(·)} from (4.6) in the first case under consideration.

4

4.3 Strong Convergence of Discrete Optimal Solutions

In this section we construct a sequence of optimization problems (Pk) for discrete inclusions

(4.4) such that optimal solutions to (Pk) strongly (in W 1,2[0, T ] norm) converge to a given

r.i.l.m. x̄(·) in (P ). Without loss of generality (due to (H1)) that α = 1 and p = 2 in (2.5)

and the definition of r.i.l.m.. Consider the problem (P ) and (P̃ ), the assumption (H5) in this

chapter is as follows

(H5) The function ϕ is continuous on U and the set Ω is locally closed around x̄(T ).
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Fixed ε > 0 that is taken from (2.5) for the given r.i.l.m. x̄(·). Take the sequence {ηk} in (4.15)

constructed via the approximation of the local optimal solution x̄(·) under consideration. Then

we define a sequence of discrete approximation problems (Pk), k ∈ IN , as follows:

minimize Jk[xk] : = ϕ0(xk(tk)) + hk

k−1∑
j=0

f
(
xk(tj),

xk(tj+1)− xk(tj)
hk

, tj

)
+
k−1∑
j=0

∫ tj+1

tj

∣∣∣xk(tj+1)− xk(tj)
hk

− ˙̄x(t)
∣∣∣2dt (4.17)

over trajectories xk = (xk0, . . . , x
k
k) of the discrete inclusions (4.4) subject to the constraints

|xk(tj)− x̄(tj)|2 ≤
ε2

4
for j = 1, . . . , k, (4.18)

k−1∑
j=0

∫ tj+1

tj

∣∣∣xk(tj+1)− xk(tj)
hk

− ˙̄x(t)
∣∣∣2dt ≤ ε

2
, (4.19)

xkk ∈ Ωk := Ω + ηkIB. (4.20)

The next theorem shows that the discrete optimal solutions of problems (Pk) converge to a

given r.i.l.m. x̄(·) of (P ).

Theorem 4.2 Let x̄(·) be an i.r.l.m. for the original Bolza problem (P ) under the validity of

assumptions (H1), (H2’), (H3)-(H5) around x̄(·). Then any sequence x̄k(·) whenever k ∈ IN

of optimal solutions to problem (Pk) piecewise linearly extended to [0, T ] converges to x̄(·) as

k →∞ in the norm topology of W 1,2[0, T ].

Proof. Similar as Theorem 3.2, we prove that for each k big enough, the discrete trajectory

{zkj } constructed in Theorem 4.1 is a feasible solution to (Pk). Next we proceed with the strong

approximation for any sequence of the discrete optimal solutions to (Pk) piecewise linearly
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extended to [0, T ]. Let us prove for any sequence of optimal solutions x̄k to (Pk) has

lim inf
k→∞

Jk[x̄
k] ≤ J [x̄]. (4.21)

To accomplish this, it suffices to prove

lim k→∞Jk[z
k] = J [x̄],

Since x̄k is optimal solution, one can gets for each k, Jk[x̄k] ≤ Jk[zk].

Consider expression (4.17) for Jk[zk], due to continuity of ϕ and the strong appromation of

{zkj } in Theorem 4.1, we have as k →∞,

ϕ(zk(tk))→ ϕ(x̄(T )),

k−1∑
j=0

∫ tj+1

tj

‖zk(tj+1)− zk(tj)
hk

− ˙̄x(t)‖2dt→ 0.

Employing now Lebesgue’s dominated convergence theorem together with Theorem 4.1 tells

us that

hk

k−1∑
j=0

f(zk(tj),
zk(tj+1)− zk(tj)

hk
, tj) =

k−1∑
j=0

∫ tj+1

tj

f(zk(tj), v
k(t), tj) dt

∼
k∑
j=1

∫ tj+1

tj

f(zk(tj), v
k(t), t) dt ∼

k−1∑
j=0

∫ tj+1

tj

f(x̄(t), vk(t), t)

=

∫ T

0
f(x̄(t), vk(t), t) dt ∼

∫ T

0
f(x̄(t), ˙̄x(t), t) dt.

The last ∼ is by Theorem 3.2, vk → ˙̄x pointwise a.e. on [0,T], by bounded convergence Lebesgue

Theorem we can get Jk[zk]→ J [x̄], which implies (4.21) .
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To proceed further, consider the numerical sequence

ck :=

∫ T

0
| ˙̄xk(t)− ˙̄x(t)|2dt, k ∈ IN, (4.22)

and verify that ck → 0 as k →∞. Since the numerical sequence in (4.22) is obviously bounded, it

has limiting points. Denote by c ≥ 0 any of them and show that c = 0. Arguing by contradiction,

suppose that c > 0. It follows from the uniform boundedness assumption (H1) and basic

functional analysis that the sequence { ˙̄xk(·)} contains a subsequence (without relabeling), which

converges in the weak topology of L2[0, T ] to some v(·) ∈ L2[0, T ]. Considering the absolutely

continuous function

x̃(t) := x0 +

∫ t

0
v(s) ds, 0 ≤ t ≤ T,

we deduce from the Newton-Leibniz formula that the sequence of the extended discrete trajec-

tories x̄k(·) converges to x̃(·) in the weak topology of W 1,2[0, T ], for which we have ˙̃x(t) = v(t)

for a.e. t ∈ [0, T ]. According to the Mazur’s weak closure theorem, there is a sequence of convex

combinations of x̄k(· that converges to x̃(·) in the norm topology of L2[0, T ], Hence it contains a

subsequence converging to x̃(·) for a.e. t ∈ [0, T ]. Follows from the continuity of F (·, t) that x̃(·)

is a feasible trajectory for the relaxed (R). Taking into account the construction of f̂F as the

convexification of fF in (2.6) with respect to the velocity variable, we arrive at the inequality

∫ T

0
f̂F (x̃(t), ˙̃x(t), t) dt ≤ lim inf

k→∞
hk

k∑
j=1

f
(
x̄kj ,

x̄kj − x̄kj−1

hk
, tj

)
. (4.23)

Observe that the integral functional

I[v] :=

∫ T

0
|v(t)− ˙̄x|2dt
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is convex and lower semicontinuous in weak topology of L2[0, T ].

It allows us to conclude that

∫ T

0
| ˙̃x(t)− ˙̄x(t)|2dt ≤ lim inf

k→∞

∫ T

0
| ˙̄xk(t)− ˙̄x(t)|2dt

= lim inf
k→∞

k∑
j=1

∫ tj

tj−1

∣∣∣ x̄k(tj)− x̄k(tj−1)

hk
− ˙̄x(t)

∣∣∣2dt.
Now passing to the limit in the constraints (4.18) and (4.19) for x̄k(·) yield x̃(·) belongs to the

prescribed W 1,2[0, T ] neighborhood of the r.i.l.m. x̄(·) from the definition.

Now we are able to pass to the limit in the cost functional formula (4.17) in (Pk) for x̄k(·)

by using (4.21), (4.23), and the assumption on ck → c > 0 in (4.22). It gives us

Ĵ [x̃] = ϕ(x̃(T )) +

∫ T

0
f̂F (x̃(t), ˙̃x(t), t) dt ≤ lim inf

k→∞
Jk[x̄

k] + c < J [x̄] = Ĵ [x̄],

which contradicts the choice of x̄(·) as a r.i.l.m. for the original Bolza problem (P ). Therefore,

one has c = 0 which establishes x̄k(·)→ x̄(·) strongly in W 1,2[0, T ].

4

4.4 Optimality Conditions for Discrete Approximations

In this section we derive necessary optimality conditions for each problem (Pk), k ∈ IN , in the

sequence of discrete approximations formulated in Section 4.1. To derive necessary optimality

conditions for problems (Pk), we employ advanced tools of variational analysis and generalized

differentiation discussed in Chapter 2.

Since the Runge-Kutta method can be derived using two step, the calculation of the sum of

two set value mapping needed. We first prove the following Corollary.
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Corollary 4.3 Let F : Rn × [0, T ] → CC(Rn), Ω1 = {(x̄, v1, v2)|v1 ∈ F (x̄, t0)}, and Ω2 =

{(x̄, v1, v2)|v2 ∈ F (x̄+ hv1, t0 + h)}, Then

N((x̄, v1, v2),Ω1 ∩ Ω2) ⊂ N((x̄, v1, v2),Ω1) +N((x̄, v1, v2),Ω1).

Proof. Following from Lemma 2.2, we only need to prove the normal qualification condition

holds for Ω1, Ω2.

Pick up arbitrary (x∗,−v∗1,−v∗2) ∈ N((x̄, v1, v2),Ω1)∩N((x̄, v1, v2),Ω1), by the definition of

Ω1, we have v∗2 = 0 and x∗ ∈ D∗F (x̄, v1)(v∗1).

Letg(x̄, v1) = x̄, v1, define G(x̄, v1) = F (g(x̄, v1), t0+h). Obviously g is strictly differentiable,

then D∗G(x̄, v1, v2) = ∇g(x̄, v1)∗D∗F (g(x̄, v1), v2), where v2 ∈ G(x̄, v1). By the definition of Ω2,

then (x∗,−v∗1) ∈ D∗G(x̄, v1, v2)(v∗2) = (1, h)y∗ = (y∗, hy∗), where y∗ ∈ D∗F (g(x̄, v1), v2)(v∗2).

Now using the coderivative property of the Lipschitz continuous function, we have y∗ = 0 from

v∗2 = 0. Then x∗ = 0, v∗1 = 0. Thus the normal qualification condition holds. We proved

N((x̄, v1, v2),Ω1 ∩ Ω2) ⊂ N((x̄, v1, v2),Ω1) +N((x̄, v1, v2),Ω1).

4

Now we employ Lemma 2.4 and calculus rules for generalized normals and subgradients

to derive necessary optimality conditions for the structural dynamic problems of discrete ap-

proximation (Pk) in the extended Euler-Lagrange form. Note that for this purpose we need

less assumptions that those imposed in (H1)–(H5). Observe also that the form of the Euler-

Lagrange inclusion below reflects the essence of the implicit Euler scheme being significantly

different from the adjoint system corresponding to the explicit Euler counterpart from [27, 30].

The solvability of the new implicit adjoint system is ensures by Lemma 2.4 due the give n proof

of the this theorem.
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Theorem 4.4 (necessary conditions for Runge-Kutta approximations I). Fix any k ∈

IN and let x̄k = (x̄k0, . . . , x̄
k
k) with x̄k0 = x0 in (4.2) be an optimal solution to problem (Pk)

constructed in Section 4.3. Assume that the sets Ω and gphFj with Fj := F (·, tj) are closed

and the function ϕ and fj := f(·, ·, tj) for j = 0, . . . , k are Lipschitz continuous around the

corresponding points. Then there exist real numbers λk and a vector pk := (pk0, . . . , p
k
k) ∈

R(k+1)n, which are not equal to zero, such that

(pkj+1 − pkj
hk

, 0.5pkj − 0.5
λk0θ

k
j

hk
, 0.5pkj − 0.5

λk0θ
k
j

hk

)
∈
(
λk0∂fj

(
x̄kj ,

x̄kj+1 − x̄kj
hk

)
1
, 0.5λk0∂fj

(
x̄kj ,

x̄kj+1 − x̄kj
hk

)
2
, 0.5λk0∂fj

(
x̄kj ,

x̄kj+1 − x̄kj
hk

)
2

)
+N

((
x̄kj , vj1, vj2

)
; ∆j1

)
+N

((
x̄kj , vj1, vj2

)
; ∆j2

)
; for j = 0, . . . , k − 1;

−pkk ∈ λk∂ϕ(x̄kk) +N(x̄kk,Ωk),

where

∆j1 =
{

(x̄kj , vj1, vj2)
∣∣ vj1 ∈ Fj(x̄kj )}, (4.24)

∆j2 =
{

(x̄kj , vj1, vj2)
∣∣ vj2 ∈ Fj+1(x̄kj + hkvj1)

}
, (4.25)

θkj := −
∫ tj+1

tj

(
˙̄x(t)−

x̄kj+1 − x̄kj
hk

)
dt. (4.26)

Proof. Skipping for notational simplicity the upper index “k" if no confusions arise, consider

the new “long" variable

z := (x0, . . . , xk, v01, . . . , vk−1 1, v02, . . . , vk−1 2) ∈ R(3k+1)n with the fixed initial vector x0

and for each k ∈ IN reformulate the discrete approximation problem (Pk) as a mathematical
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program of the type (MP ) in Chapter 2 with the following data:

min φ(z) := ϕ0(xk) + hk

k−1∑
j=0

f(xj ,
vj1 + vj2

2
, tj) +

k−1∑
j=0

∫ tj+1

tj

|vj1 + vj2
2

− ˙̄x(t)|2dt (4.27)

subject to the functional and geometric constraints

φj(z) := |xj − x̄(tj)|2 −
ε2

4
≤ 0 for j = 1, . . . , k, (4.28)

φk+1(z) :=

k−1∑
j=0

∫ tj+1

tj

|vj1 + vj2
2

− ˙̄x(t)|2dt− ε

2
≤ 0, (4.29)

gj(z) := xj+1 − xj − hk
vj1 + vj2

2
= 0 for j = 0, . . . , k − 1, gk(z) = x(0)− x0 ≡ 0, (4.30)

z ∈ ∆j =
{

(x0, . . . , xk, v01, . . . , vk−1 1, v02, . . . , vk−1 2) ∈ R(3k+1)n

∣∣ vj1 ∈ Fj(xj), vj2 ∈ Fj+1(xj + hkvj1)
}
, j = 0, . . . , k − 1,

(4.31)

z ∈ ∆k =
{

(x0, . . . , xk, v01, . . . , vk−1 1, v02, . . . , vk−1 2) ∈ R(3k+1)n
∣∣ xk ∈ Ωk

}
. (4.32)

Let x̄k = (x0, x̄
k
1, . . . , x̄

k
k) be a given local optimal solution to problem (Pk), and thus by the

Runge-Kutta scheme (4.4), there exist vkj,1 ∈ Fj(xkj ) such that

x̄kj+1 − x̄kj ∈ 0.5h{vkj1 + Fj+1(xkj + hkv
k
j1)}.

Let vkj2 = 2(x̄kj+1 − x̄kj )/hk − vkj1, we get the corresponding extended variable

z̄ := (x0, . . . , x̄k, v01, . . . , vk−1 1, v02, . . . , vk−1 2)

, where the upper index “k" is omitted, gives a local minimum to the mathematical program
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(MP ) with the data defined in (4.27)–(4.32). Applying now to z̄ the generalized Lagrange

multiplier rule from Lemma 2.4, for j = 0, . . . , k we find normal collections

z∗j = (x∗0j , . . . , x
∗
kj , v

∗
0j,1, . . . , v

∗
k−1j,1, v

∗
0j,2, . . . , v

∗
k−1j,2) ∈ N(z̄; ∆j) (4.33)

and well as nonnegative multipliers (µ0, . . . , µk+1) and vectors ψj ∈ Rn for j = 0, . . . , k such

that we have the conditions

µjφj(z̄) = 0 for j = 1, . . . , k + 1, (4.34)

− z∗0 − . . .− z∗k ∈ ∂
( k+1∑
j=0

µjφj

)
(z̄) +

k∑
j=0

(∇gj(z̄))Tψj . (4.35)

It follows from (4.33) for j = 0, . . . , k gives us by the structure of ∆j that

(x∗jj , v
∗
jj,1, v

∗
jj,2) ∈ N

(
(x̄j , vj1, vj2); ∆j

)
and x∗ij = v∗ij,1 = v∗ij,2 = 0 if i 6= j, j = 0, . . . , k − 1.

x∗kk ∈ N
(
x̄k; Ωk

)
Employing the above conditions together with the subdifferential sum rule from [29, Theo-

rem 2.33] with taking into the nonnegativity of µj , we get from (4.35) that

∂
( k+1∑
j=0

µjφj

)
(z̄) +

k∑
j=0

(∇gj(z̄))Tψj ⊂
k+1∑
j=0

µj∂φj(z̄) +
k∑
j=0

(∇gj(z̄))Tψj

= µ0∇
[
ϕ(xk) + hk

k−1∑
j=0

f
(
xj ,

vj1 + vj2
2

, tj

)
+

k−1∑
j=0

∫ tj+1

tj

∣∣∣vj1 + vj2
2

− ˙̄x(t)
∣∣∣2dt]

+
k∑
j=1

µj∇(|xj − x̄(tj)|2) + µk+1∇
( k−1∑
j=0

∫ tj+1

tj

∣∣∣vj1 + vj2
2

− ˙̄x(t)
∣∣∣2dt)

+
k−1∑
j=0

∇(xj+1 − xj − 0.5hk(vj1 + vj2))Tψj +∇(x(0)− x0)Tψk,
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where the derivatives (gradients, Jacobians) of all the composite/sum functions involves with

respect of all their variables of are taken at the optimal point z̄.

Considering now the Lagrange multipliers λk := µ0, and using the expressions for θkj in

(4.26), we find from the above subgradients

u0 ∈ ∂ϕ(x̄k), (vj , wj) ∈ ∂fj(x̄j , ȳj), j = 0, . . . , k − 1

for which we have the conditions

−x∗00 = λkhkv0 − ψ0 − ψk, ,

−x∗jj = λkhkvj + ψj − ψj+1, j = 1, . . . , k − 1,

−x∗kk = λku0 + ψk−1, j = 1, . . . , k − 1,

−vjj := −v∗jj,1 = 0.5λk0hkwj + λk0θ
k
j − 0.5hkψj = −v∗jj,2, j = 0, . . . , k − 1.

Next we introduce for each k ∈ IN the adjoint discrete trajectories by

pkj+1 := ψkj for j = 0, . . . , k − 1,

pk0 = ψkk and pkk := −x∗kk + λku0.

Then for each j = 0, . . . , k − 1, we get the relationships

pkj+1 − pkj
hk

=
ψkj+1 − ψkj

hk
= λk0vj +

x∗jj
hk
,



www.manaraa.com

71

pkj+1 −
λk0θ

k
j

hk
= ψkj+1 −

λk0θ
k
j

hk
= λk0wj +

2v∗jj
hk

.

pkk := −x∗kk+λku0 given us the transversality inclusion −pkk ∈ λk∂ϕ(x̄kk)+N(x̄kk,Ωk). Employing

Corollary 4.3, where ∆j = Ωj1 ∩ Ωj2, we have

N((x̄j , vj1, vj2),∆j) ⊂ N((x̄j , vj1, vj2),Ωj1) +N((x̄j , vj1, vj2),Ωj2)

which ensure the validity of the necessary conditions of the theorem for each j = 0, . . . , k − 1.

4

If consider other formalization of ∆j(4.31) for j = 0, . . . , k − 1 as

∆j =
{

(x0, . . . , xk, v0, . . . , vk−1) ∈ R(2k+1)n
∣∣ vj ∈ 0.5{y + Fj+1(xj + hky)}; y ∈ Fj(xj)

}
, ,

(4.36)

then we can find another version of necessary conditions for the discrete problems.

Theorem 4.5 (necessary conditions for Runge-Kutta approximations II). Fix any

k ∈ IN and let x̄k = (x̄k0, . . . , x̄
k
k) with x̄k0 = x0 in (4.2) be an optimal solution to problem (Pk)

constructed in Section 4.3. Assume that the sets Ω and gphFj with Fj := F (·, tj) are closed

and the function ϕ and fj := f(·, ·, tj) for j = 0, . . . , k are Lipschitz continuous around the

corresponding points.

Then there exist real numbers λk and a vector pk := (pk0, . . . , p
k
k) ∈ R(k+1)n, which are not

equal to zero, such that for j = 0, . . . , k − 1

(pkj+1 − pkj
hk

, pkj+1 −
λk0θ

k
j

hk

)
∈ λk0∂fj

(
x̄kj ,

x̄kj+1 − x̄kj
hk

)
+N

((
x̄kj ,

x̄kj+1 − x̄kj
hk

)
; gphGj

)
,
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−pkk ∈ λk∂ϕi(x̄kk) +N(x̄kk,Ωk),

where

Gj(x̄
k
j ) :=

{
0.5y + 0.5Fj+1(x̄kj )

∣∣ y ∈ Fj(x̄kj )}, (4.37)

θkj := −
∫ tj+1

tj

(
˙̄x(t)−

x̄kj+1 − x̄kj
hk

)
dt. (4.38)

Proof. Similar as Theorem 4.4, now let the new “long" variable z as

z := (x0, . . . , xk, v1, . . . , vk−1) ∈ R(2k+1)n with the fixed initial vector x0

and for each k ∈ IN reformulate the discrete approximation problem (Pk) as a mathematical

program with the following data:

min φ(z) := ϕ0(xk) + hk

k−1∑
j=0

f(xj , vj , tj) +

k−1∑
j=0

∫ tj+1

tj

|vj − ˙̄x(t)|2dt

subject to the functional and geometric constraints

φj(z) := |xj − x̄(tj)|2 −
ε2

4
≤ 0 for j = 1, . . . , k,

φk+1(z) :=
k−1∑
j=0

∫ tj+1

tj

|vj − ˙̄x(t)|2dt− ε

2
≤ 0,

gj(z) := xj+1 − xj − hkvj = 0 for j = 0, . . . , k − 1, gk(z) = x(0)− x0 ≡ 0,

z ∈ ∆j =
{

(x0, . . . , xk, v0, . . . , vk−1) ∈ R(2k+1)n

∣∣ vj ∈ 0.5{y + Fj+1(xj + hky)}; y ∈ Fj(xj)
}
, j = 0, . . . , k − 1,
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z ∈ ∆k =
{

(x0, . . . , xk, v1, . . . , vk−1) ∈ R(2k+1)n
∣∣ xk ∈ Ωk

}
.

Repeat the some steps as in the proof of Theorem 4.4, the proof of this theorem can be com-

pleted. 4

A natural question arises about the relationship between these two version. To do this, we

need to analysis the relationship between N
(

(x̄j , vj1, vj2); ∆j

)
and N

((
x̄j ,

vj1+vj2

2

)
; ∆j

)
. This

is an open question of our further research. Actually, comparing the necessary conditions in

Theorem 3.3 and Theorem 4.5, we will find these two theorem are similar. the only difference

is since these conditions are based on different schemes, the Gj in Theorem 4.5 replace the Fj

in Theorem 3.3.
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Chapter 5

Discussion

This dissertation develops constructive numerical approach to investigate the generalized Bolza

problem of optimizing constrained differential inclusions by using two discrete approximations

methods: the implicit Euler scheme and the Runge-Kutta scheme. In this way we not only

justify the well-posedness of the suggested discrete approximation procedures in the sense of

either the uniform or W 1,2-convergence of discrete optimal solutions to a given local (strong

or intermediate) minimizer of the original nonsmooth Bolza problem, but also derive necessary

optimality conditions to solve each problem of the corresponding discrete approximations. As

mentioned in the introductory Chapter 1, the results obtained are new even in case of the

numerical method even for unconstrained differential inclusions satisfying the classical Lipschitz

condition.

In Section 3.5, we get the necessary optimality conditions for the given intermediate local

minimizer of the original problem (P ) under the condition that the velocity function F is

Lipschitzian. A natural question arises about the possibility to derive the necessary optimality

conditions for the given intermediate or strong local minimizer of the original problem (P ) for

favorable classes of ROSL differential inclusions by passing to the limit from those obtained for

the implicit Euler discrete approximations (P̃k) and the Runge-Kutta discrete approximations

(Pk), respectively, as k →∞.

On the other hand, the method of discrete approximations has been successfully employed

in [7] to derive necessary optimality conditions for the Bolza problem governed by a dissipative
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(hence ROSL while unbounded and heavily non-Lipschitzian) differential inclusion that arises

in optimal control of Moreau’s sweeping process with mechanical applications. The procedure

in [7] exploits some specific features of the controlled sweeping process over convex polyhedral

sets, and thus a principal issue of the our further research is about the possibility to extend

these results to more general ROSL differential inclusions.
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This dissertation concerns the study of the generalized Bolza type problem for dynamic sys-

tems governed by constrained differential inclusions. We develop finite-discrete approximations

of differential inclusions by using the implicit Euler scheme and the Runge-Kutta scheme for

approximating time derivatives, while an appropriate well-posedness of each approximation is

justified. We establish the uniform approximation of strong local minimizers for the continuous-

time Bolza problem by optimal solutions to the implicitly discretized finite-difference systems in

the general ROSL setting and even by the strengthen W1;2-norm approximation of this type in

the case ”intermediate" (between strong and weak minimizers) local minimizers under addition-

al assumptions. We derive the strong approximation of feasible trajectories for the Lipschitzian

differential inclusions and also the strong convergence of optimal solutions to the corresponding

dynamic optimization problems under Runge-Kutta discrete approximations. Finally, we derive

necessary optimality conditions for each scheme for the discretized Bolza problems via suitable

generalized differential constructions of variational analysis.
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